LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
- URL: http://arxiv.org/abs/2407.07740v1
- Date: Wed, 10 Jul 2024 15:11:37 GMT
- Title: LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
- Authors: Jörg Gamerdinger, Sven Teufel, Stephan Amann, Georg Volk, Oliver Bringmann,
- Abstract summary: We propose the Lane Safety Metric (LSM) to evaluate the safety of lane detection systems.
Additional factors such as the semantics of the scene with road type and road width should be considered for the evaluation of lane detection.
We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.
- Score: 0.5326090003728084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.
Related papers
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - A Flow-based Credibility Metric for Safety-critical Pedestrian Detection [16.663568842153065]
Safety is of utmost importance for perception in automated driving (AD)
Standard evaluation schemes utilize safety-agnostic metrics to argue sufficient detection performance.
This paper introduces a novel credibility metric, called c-flow, for pedestrian bounding boxes.
arXiv Detail & Related papers (2024-02-12T13:30:34Z) - A Safety-Adapted Loss for Pedestrian Detection in Automated Driving [13.676179470606844]
In safety-critical domains, errors by the object detector may endanger pedestrians and other vulnerable road users.
We propose a safety-aware loss variation that leverages the estimated per-pedestrian criticality scores during training.
arXiv Detail & Related papers (2024-02-05T13:16:38Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
We propose new object detection measures that reward the correct identification of objects that are most dangerous and most likely to affect driving decisions.
We apply our model on the recent autonomous driving dataset nuScenes, and we compare nine object detectors.
Results show that, in several settings, object detectors that perform best according to the nuScenes ranking are not the preferable ones when the focus is shifted on safety and reliability.
arXiv Detail & Related papers (2022-03-04T09:31:20Z) - Network-level Safety Metrics for Overall Traffic Safety Assessment: A
Case Study [7.8191100993403495]
This paper defines a new set of network-level safety metrics for the overall safety assessment of traffic flow by processing imagery taken by roadside infrastructure sensors.
An integrative analysis of the safety metrics and crash data reveals the insightful temporal and spatial correlation between the representative network-level safety metrics and the crash frequency.
arXiv Detail & Related papers (2022-01-27T19:07:08Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes.
The system can warn of upcoming risks immediately in the field and improve the safety of risk frequent areas by assessing the safety levels of roads without actual collisions.
arXiv Detail & Related papers (2021-07-26T23:00:56Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.