Transformer Alignment in Large Language Models
- URL: http://arxiv.org/abs/2407.07810v1
- Date: Wed, 10 Jul 2024 16:30:27 GMT
- Title: Transformer Alignment in Large Language Models
- Authors: Murdock Aubry, Haoming Meng, Anton Sugolov, Vardan Papyan,
- Abstract summary: We consider Large Language Models (LLMs) as transforming embeddings via a discrete, coupled, nonlinear, dynamical system in high dimensions.
This perspective motivates tracing the trajectories of individual tokens as they pass through transformer blocks, and linearizing the system along these trajectories through their Jacobian matrices.
In our analysis of 38 openly available LLMs, we uncover the alignment of top left and right singular vectors of Residual Jacobians, as well as the emergence of linearity and layer-wise exponential growth.
- Score: 3.007031501305338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made significant strides in natural language processing, and a precise understanding of the internal mechanisms driving their success is essential. We regard LLMs as transforming embeddings via a discrete, coupled, nonlinear, dynamical system in high dimensions. This perspective motivates tracing the trajectories of individual tokens as they pass through transformer blocks, and linearizing the system along these trajectories through their Jacobian matrices. In our analysis of 38 openly available LLMs, we uncover the alignment of top left and right singular vectors of Residual Jacobians, as well as the emergence of linearity and layer-wise exponential growth. Notably, we discover that increased alignment $\textit{positively correlates}$ with model performance. Metrics evaluated post-training show significant improvement in comparison to measurements made with randomly initialized weights, highlighting the significant effects of training in transformers. These findings reveal a remarkable level of regularity that has previously been overlooked, reinforcing the dynamical interpretation and paving the way for deeper understanding and optimization of LLM architectures.
Related papers
- Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
We present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models.
The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters.
MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage.
arXiv Detail & Related papers (2024-04-20T08:34:39Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
Large Language Models (LLMs) are pivotal in advancing natural language processing.
LLMs often struggle with complex reasoning tasks due to inefficient attention distributions.
We introduce a novel method for extending computed tokens in the Chain-of-Thought process, utilizing attention mechanism optimization.
arXiv Detail & Related papers (2024-03-22T03:23:58Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Language Models as Hierarchy Encoders [22.03504018330068]
We introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs)
Our method situates the output embedding space of pre-trained LMs within a Poincar'e ball with a curvature that adapts to the embedding dimension.
We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines.
arXiv Detail & Related papers (2024-01-21T02:29:12Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
We empirically investigate knowledge transfer from larger to smaller models through a parametric perspective.
We employ sensitivity-based techniques to extract and align knowledge-specific parameters between different large language models.
Our findings highlight the critical factors contributing to the process of parametric knowledge transfer.
arXiv Detail & Related papers (2023-10-17T17:58:34Z) - Going Beyond Linear Mode Connectivity: The Layerwise Linear Feature
Connectivity [62.11981948274508]
The study of LLFC transcends and advances our understanding of LMC by adopting a feature-learning perspective.
We provide comprehensive empirical evidence for LLFC across a wide range of settings, demonstrating that whenever two trained networks satisfy LMC, they also satisfy LLFC in nearly all the layers.
arXiv Detail & Related papers (2023-07-17T07:16:28Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.