論文の概要: Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape
- arxiv url: http://arxiv.org/abs/2407.07917v1
- Date: Fri, 5 Jul 2024 22:03:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:58:43.559729
- Title: Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape
- Title(参考訳): フェデレーションラーニングにおける非協力的バックドア攻撃 : 新たな脅威景観
- Authors: Tuan Nguyen, Dung Thuy Nguyen, Khoa D Doan, Kok-Seng Wong,
- Abstract要約: プライバシ保護モデルトレーニングのためのフェデレートラーニング(FL)は、バックドア攻撃の影響を受けやすいままである。
本研究は,発展途上のFL景観におけるバックドア攻撃に対する堅牢な防御の必要性を強調した。
- 参考スコア(独自算出の注目度): 7.00762739959285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the promise of Federated Learning (FL) for privacy-preserving model training on distributed data, it remains susceptible to backdoor attacks. These attacks manipulate models by embedding triggers (specific input patterns) in the training data, forcing misclassification as predefined classes during deployment. Traditional single-trigger attacks and recent work on cooperative multiple-trigger attacks, where clients collaborate, highlight limitations in attack realism due to coordination requirements. We investigate a more alarming scenario: non-cooperative multiple-trigger attacks. Here, independent adversaries introduce distinct triggers targeting unique classes. These parallel attacks exploit FL's decentralized nature, making detection difficult. Our experiments demonstrate the alarming vulnerability of FL to such attacks, where individual backdoors can be successfully learned without impacting the main task. This research emphasizes the critical need for robust defenses against diverse backdoor attacks in the evolving FL landscape. While our focus is on empirical analysis, we believe it can guide backdoor research toward more realistic settings, highlighting the crucial role of FL in building robust defenses against diverse backdoor threats. The code is available at \url{https://anonymous.4open.science/r/nba-980F/}.
- Abstract(参考訳): 分散データに対するプライバシ保護モデルトレーニングのためのフェデレートラーニング(FL)の約束にもかかわらず、バックドアアタックには影響を受けない。
これらの攻撃は、トレーニングデータにトリガ(特定の入力パターン)を埋め込むことでモデルを操作する。
従来のシングルトリガー攻撃と、クライアントが協力する協調マルチトリガー攻撃に対する最近の取り組みは、調整要求によるアタックリアリズムの制限を強調している。
より危険なシナリオとして,非協調的マルチトリガー攻撃について検討する。
ここでは、独立した敵が独自のクラスをターゲットにした個別のトリガーを導入する。
これらの並列攻撃はFLの分散特性を悪用し、検出を困難にしている。
このような攻撃に対して,本実験では,メインタスクに影響を与えることなく,個々のバックドアの学習を成功させるという,FLの脅威的脆弱性を実証した。
本研究は,発展途上のFL景観におけるバックドア攻撃に対する堅牢な防御の必要性を強調した。
実証分析に焦点が当てられているが、より現実的な設定に向けてバックドア研究を導くことができると信じており、さまざまなバックドア脅威に対する堅牢な防御を構築する上でFLが重要な役割を担っていることを強調している。
コードは \url{https://anonymous.4open.science/r/nba-980F/} で公開されている。
関連論文リスト
- Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
数発の学習がバックドアアタックに対して脆弱であることは明らかです。
本手法は,FSLタスクにおける攻撃成功率(ASR)を,異なる数発の学習パラダイムで示す。
この研究は、数発の学習がまだバックドア攻撃に悩まされており、そのセキュリティに注意を払う必要があることを明らかにしている。
論文 参考訳(メタデータ) (2023-12-31T06:43:36Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
バックドア攻撃が、特有のメカニズムによってどのように動作するかを示す。
本研究は, 対照的なバックドア攻撃の特異性に合わせて, 防御の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - FTA: Stealthy and Adaptive Backdoor Attack with Flexible Triggers on
Federated Learning [11.636353298724574]
我々は,新たなステルスで堅牢なバックドア攻撃を,連邦学習(FL)防衛に対して提案する。
我々は、許容できない柔軟なトリガーパターンで良質なサンプルを操作することを学べる生成的トリガー関数を構築した。
我々のトリガージェネレータは学習を継続し、異なるラウンドにまたがって適応し、グローバルモデルの変化に適応できるようにします。
論文 参考訳(メタデータ) (2023-08-31T20:25:54Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Towards a Defense against Backdoor Attacks in Continual Federated
Learning [26.536009090970257]
連合型連続学習環境におけるバックドア攻撃を防御する新しい枠組みを提案する。
私たちのフレームワークでは,バックボーンモデルとシャドーモデルという,2つのモデルを並列にトレーニングしています。
我々は,既存のバックドア攻撃に対する防御において,我々の枠組みが著しく改善されることを実験的に示す。
論文 参考訳(メタデータ) (2022-05-24T03:04:21Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - Dynamic backdoor attacks against federated learning [0.5482532589225553]
Federated Learning(FL)は、データプライバシとセキュリティを損なうことなく、何百万人もの参加者が協力してモデルをトレーニングできる、新しい機械学習フレームワークである。
本稿では、FL設定下での動的バックドア攻撃に着目し、敵の目標は、ターゲットタスクにおけるモデルの性能を低下させることである。
我々の知る限りでは、FL設定下での動的バックドア攻撃の研究に焦点を当てた最初の論文である。
論文 参考訳(メタデータ) (2020-11-15T01:32:58Z) - BlockFLA: Accountable Federated Learning via Hybrid Blockchain
Architecture [11.908715869667445]
Federated Learning (FL) は、分散された分散化された機械学習プロトコルである。
FL中、攻撃者が訓練されたモデルにバックドアを注入できることが示されている。
我々は、スマートコントラクトを使用して攻撃者を自動的に検出し、処罰する、ハイブリッドブロックチェーンベースのFLフレームワークを開発した。
論文 参考訳(メタデータ) (2020-10-14T22:43:39Z) - Defending against Backdoors in Federated Learning with Robust Learning
Rate [25.74681620689152]
フェデレートラーニング(FL)は、エージェントの集合が、潜在的に敏感なデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
バックドア攻撃において、敵はトレーニング中にモデルにバックドア機能を埋め込もうとする。
FLプロトコルの変更を最小限に抑える軽量ディフェンスを提案する。
論文 参考訳(メタデータ) (2020-07-07T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。