論文の概要: Dynamic backdoor attacks against federated learning
- arxiv url: http://arxiv.org/abs/2011.07429v1
- Date: Sun, 15 Nov 2020 01:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 07:49:34.949291
- Title: Dynamic backdoor attacks against federated learning
- Title(参考訳): 連合学習に対する動的バックドア攻撃
- Authors: Anbu Huang
- Abstract要約: Federated Learning(FL)は、データプライバシとセキュリティを損なうことなく、何百万人もの参加者が協力してモデルをトレーニングできる、新しい機械学習フレームワークである。
本稿では、FL設定下での動的バックドア攻撃に着目し、敵の目標は、ターゲットタスクにおけるモデルの性能を低下させることである。
我々の知る限りでは、FL設定下での動的バックドア攻撃の研究に焦点を当てた最初の論文である。
- 参考スコア(独自算出の注目度): 0.5482532589225553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a new machine learning framework, which enables
millions of participants to collaboratively train machine learning model
without compromising data privacy and security. Due to the independence and
confidentiality of each client, FL does not guarantee that all clients are
honest by design, which makes it vulnerable to adversarial attack naturally. In
this paper, we focus on dynamic backdoor attacks under FL setting, where the
goal of the adversary is to reduce the performance of the model on targeted
tasks while maintaining a good performance on the main task, current existing
studies are mainly focused on static backdoor attacks, that is the poison
pattern injected is unchanged, however, FL is an online learning framework, and
adversarial targets can be changed dynamically by attacker, traditional
algorithms require learning a new targeted task from scratch, which could be
computationally expensive and require a large number of adversarial training
examples, to avoid this, we bridge meta-learning and backdoor attacks under FL
setting, in which case we can learn a versatile model from previous
experiences, and fast adapting to new adversarial tasks with a few of examples.
We evaluate our algorithm on different datasets, and demonstrate that our
algorithm can achieve good results with respect to dynamic backdoor attacks. To
the best of our knowledge, this is the first paper that focus on dynamic
backdoor attacks research under FL setting.
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は,数百万の参加者が,データのプライバシとセキュリティを損なうことなく協調的にマシンラーニングモデルをトレーニング可能な,新たなマシンラーニングフレームワークである。
各クライアントの独立性と機密性のため、flはすべてのクライアントが設計上正直であることを保証するものではない。
In this paper, we focus on dynamic backdoor attacks under FL setting, where the goal of the adversary is to reduce the performance of the model on targeted tasks while maintaining a good performance on the main task, current existing studies are mainly focused on static backdoor attacks, that is the poison pattern injected is unchanged, however, FL is an online learning framework, and adversarial targets can be changed dynamically by attacker, traditional algorithms require learning a new targeted task from scratch, which could be computationally expensive and require a large number of adversarial training examples, to avoid this, we bridge meta-learning and backdoor attacks under FL setting, in which case we can learn a versatile model from previous experiences, and fast adapting to new adversarial tasks with a few of examples.
我々は,アルゴリズムを異なるデータセット上で評価し,動的バックドア攻撃に対して良好な結果が得られることを示す。
私たちの知る限りでは、fl設定下での動的バックドアアタック研究に焦点を当てた最初の論文です。
関連論文リスト
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
本研究では,攻撃者がモデルのエッジ部分のみにアクセスした場合に,ユニバーサルな敵攻撃を発生させる可能性について検討する。
提案手法は, エッジ側の重要な特徴を活用することで, 未知のクラウド部分において, 効果的な誤予測を誘導できることを示唆する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
論文 参考訳(メタデータ) (2024-11-15T11:06:24Z) - Persistent Backdoor Attacks in Continual Learning [5.371962853011215]
最小の敵の影響を生かしたBlind Task Backdoor と Latent Task Backdoor-each という2つの永続的バックドア攻撃を導入する。
以上の結果から,両攻撃は連続学習アルゴリズム間で連続的に高い成功率を達成し,最先端の防御を効果的に回避できることが示唆された。
論文 参考訳(メタデータ) (2024-09-20T19:28:48Z) - Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape [7.00762739959285]
プライバシ保護モデルトレーニングのためのフェデレートラーニング(FL)は、バックドア攻撃の影響を受けやすいままである。
本研究は,発展途上のFL景観におけるバックドア攻撃に対する堅牢な防御の必要性を強調した。
論文 参考訳(メタデータ) (2024-07-05T22:03:13Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
本稿では,GABAttackを提案する。GABAttackは,ネットワークトラフィック分類のためのフェデレーション学習に対する新しい遺伝的アルゴリズムに基づくバックドア攻撃である。
この研究は、ネットワークセキュリティの専門家や実践者がこのような攻撃に対して堅牢な防御策を開発するための警告となる。
論文 参考訳(メタデータ) (2023-09-27T14:02:02Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL)は、プライバシと信頼性の両面でアドバンテージを提供する。
本稿では,P2PFLに対する新たなバックドア攻撃を提案する。
論文 参考訳(メタデータ) (2023-01-23T21:49:28Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - Dynamic Defense Against Byzantine Poisoning Attacks in Federated
Learning [11.117880929232575]
フェデレート・ラーニングはビザチンによる敵対的な攻撃に弱い。
本稿では,これらのクライアントを動的に破棄する動的集約演算子を提案する。
その結果,集約するクライアントの動的選択により,グローバル学習モデルの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-07-29T18:02:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。