論文の概要: Solving General Natural-Language-Description Optimization Problems with Large Language Models
- arxiv url: http://arxiv.org/abs/2407.07924v1
- Date: Tue, 9 Jul 2024 07:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:58:43.547699
- Title: Solving General Natural-Language-Description Optimization Problems with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた一般自然言語記述最適化問題の解法
- Authors: Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, Wotao Yin,
- Abstract要約: 外部ソルバでLLMを増強するOPtLLMという新しいフレームワークを提案する。
OptLLMは自然言語でユーザクエリを受け付け、それらを数学的定式化やプログラミングコードに変換し、解決者を呼び出して結果を計算する。
OptLLMフレームワークのいくつかの機能は、2023年6月から試用されている。
- 参考スコア(独自算出の注目度): 34.50671063271608
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optimization problems seek to find the best solution to an objective under a set of constraints, and have been widely investigated in real-world applications. Modeling and solving optimization problems in a specific domain typically require a combination of domain knowledge, mathematical skills, and programming ability, making it difficult for general users and even domain professionals. In this paper, we propose a novel framework called OptLLM that augments LLMs with external solvers. Specifically, OptLLM accepts user queries in natural language, convert them into mathematical formulations and programming codes, and calls the solvers to calculate the results for decision-making. In addition, OptLLM supports multi-round dialogues to gradually refine the modeling and solving of optimization problems. To illustrate the effectiveness of OptLLM, we provide tutorials on three typical optimization applications and conduct experiments on both prompt-based GPT models and a fine-tuned Qwen model using a large-scale selfdeveloped optimization dataset. Experimental results show that OptLLM works with various LLMs, and the fine-tuned model achieves an accuracy boost compared to the promptbased models. Some features of OptLLM framework have been available for trial since June 2023 (https://opt.alibabacloud.com/chat or https://opt.aliyun.com/chat).
- Abstract(参考訳): 最適化問題は、一連の制約の下で目的に対する最良の解を見つけようとしており、現実世界のアプリケーションで広く研究されている。
特定のドメインにおける最適化問題のモデリングと解決には、通常、ドメイン知識、数学的スキル、プログラミング能力の組み合わせが必要である。
本稿では,LLMを外部解法で拡張するOPtLLMという新しいフレームワークを提案する。
具体的には、OptLLMは自然言語でユーザクエリを受け付け、それらを数学的定式化やプログラミングコードに変換し、解決者を呼び出して意思決定の結果を計算する。
さらに、OpsLLMは複数ラウンドの対話をサポートし、最適化問題のモデリングと解決を徐々に洗練する。
OptLLMの有効性を説明するために、我々は3つの典型的な最適化アプリケーションに関するチュートリアルを提供し、大規模自己開発最適化データセットを用いたプロンプトベースGPTモデルと微調整Qwenモデルの両方の実験を行う。
実験結果から, OptLLM は様々な LLM で動作することが示された。
OptLLMフレームワークのいくつかの機能は、2023年6月から試用されている(https://opt.alibabacloud.com/chat、https://opt.aliyun.com/chat)。
関連論文リスト
- Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
商用問題解決者のための自然言語記述から最適化モデルを作成するための自動アプローチを開発する。
本稿では,(1)問題依存仮説空間の定義,(2)不確実性の下でこの空間を効率的に探索すること,(3)定式化の正しさを評価すること,の3つの課題を同定する。
論文 参考訳(メタデータ) (2024-11-03T20:41:38Z) - LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch [16.174567164068037]
最適化の一般化を促進するため,LLMOPTと呼ばれる統合学習ベースのフレームワークを提案する。
LLMOPTは、様々な最適化問題タイプを定義するための普遍モデルとして導入された5要素の定式化を構築している。
LLMOPTの最適化一般化能力を評価し,実世界の6つのデータセットを比較した。
論文 参考訳(メタデータ) (2024-10-17T04:37:37Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale [16.33736498565436]
本稿では,Large Language Model (LLM) を用いた自然言語記述から線形プログラミング問題の定式化と解法を提案する。
本システムでは,数理モデルの開発,ソルバコードの記述とデバッグ,生成したソリューションの評価,モデルとコードの効率性と正確性の向上を実現している。
実験によると、OptiMUS-0.3は、簡単なデータセットで12%以上、ハードデータセットで8%以上、既存の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-07-29T01:31:45Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
大規模言語モデル (LLM) は数学的推論における問題解決能力を示した。
本稿では,人間可読入力と出力を用いたエンドツーエンド最適化問題のベンチマークであるOptiBenchを提案する。
論文 参考訳(メタデータ) (2024-07-13T13:27:57Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
大規模言語モデル(LLM)は、顕著な推論能力を示している。
本稿では,LLMが様々なシナリオにまたがるゼロショット最適化能力を有していることを主張する。
LLMを用いた数値最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T13:57:37Z) - OptiMUS: Scalable Optimization Modeling with (MI)LP Solvers and Large
Language Models [21.519880445683107]
本稿では,Large Language Model (LL)MベースのエージェントであるOptiMUSを紹介する。
OptiMUSは、数学的モデルを開発し、ソルバコードを書き、デバッグし、生成したソリューションを評価し、これらの評価に基づいてモデルとコードを改善することができる。
実験によると、OptiMUSは、簡単なデータセットで既存の最先端メソッドを20%以上、ハードデータセットで30%以上上回っている。
論文 参考訳(メタデータ) (2024-02-15T18:19:18Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。