Purity benchmarking study of error coherence in a single Xmon qubit
- URL: http://arxiv.org/abs/2407.07960v1
- Date: Wed, 10 Jul 2024 18:01:04 GMT
- Title: Purity benchmarking study of error coherence in a single Xmon qubit
- Authors: Auda Zhu, Jérémy H. Béjanin, Xicheng Xu, Matteo Mariantoni,
- Abstract summary: We simultaneously measure the coherence noise budget across two different operational frequencies.
Incoherent errors, which predominate in overall error rates, exhibit minimal frequency dependence.
Coherent errors, although less prevalent, show significant sensitivity to operational frequency variations and telegraphic noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this study, we employ purity benchmarking (PB) to explore the dynamics of gate noise in a superconducting qubit system. Over 1110 hours of observations on an Xmon qubit, we simultaneously measure the coherence noise budget across two different operational frequencies. We find that incoherent errors, which predominate in overall error rates, exhibit minimal frequency dependence, suggesting they are primarily due to wide-band, diffusive incoherent error sources. In contrast, coherent errors, although less prevalent, show significant sensitivity to operational frequency variations and telegraphic noise. We speculate that this sensitivity is due to interactions with a single strongly coupled environmental defect -- modeled as a two-level system -- which influences qubit control parameters and causes coherent calibration errors. Our results also demonstrate that PB offers improved sensitivity, capturing additional dynamics that conventional relaxation time measurements cannot detect, thus presenting a more comprehensive method for capturing dynamic interactions within quantum systems. The intricate nature of these coherence dynamics underscores the need for further research.
Related papers
- Detrimental non-Markovian errors for surface code memory [0.5490714603843316]
We study the structure of non-Markovian correlated errors and their impact on surface code memory performance.
Our analysis shows that while not all temporally correlated structures are detrimental, certain structures, particularly multi-time "streaky" correlations, can severely degrade logical error rate scaling.
arXiv Detail & Related papers (2024-10-31T09:52:21Z) - Limitations to Dynamical Error Suppression and Gate-Error Virtualization from Temporally Correlated Nonclassical Noise [0.0]
We study a minimal exactly solvable single-qubit model under Gaussian quantum dephasing noise.
For digital periodic control, we prove that, under mild conditions on the low-frequency behavior of the nonclassical noise spectrum, the gate fidelity saturates at a value that is strictly smaller than the one attainable in the absence of control history.
We find that only if decoupling can keep the qubit highly pure over a timescale larger than the correlation time of the noise, the bath approximately converges to its original statistics and a stable-in-time control performance is recovered.
arXiv Detail & Related papers (2024-07-05T18:00:00Z) - Error mitigation with stabilized noise in superconducting quantum processors [2.2752198833969315]
We experimentally demonstrate that tuning of the qubit-TLS interactions helps reduce noise instabilities and enables more reliable error-mitigation performance.
We anticipate that the capabilities introduced here will be crucial for the exploration of quantum applications on solid-state processors at non-trivial scales.
arXiv Detail & Related papers (2024-07-02T17:47:07Z) - Realization of robust quantum noise characterization in the presence of
coherent errors [0.0]
Complex quantum systems and their various applications are susceptible to noise of coherent and incoherent nature.
We study a scheme of repeated sequential measurements that enables the characterization of incoherent errors by reducing the effects of coherent errors.
arXiv Detail & Related papers (2024-01-16T11:35:24Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.