Symmetry in Multi-Qubit Correlated Noise Errors Enhances Surface Code Thresholds
- URL: http://arxiv.org/abs/2506.15490v1
- Date: Wed, 18 Jun 2025 14:28:12 GMT
- Title: Symmetry in Multi-Qubit Correlated Noise Errors Enhances Surface Code Thresholds
- Authors: SiYing Wang, Yue Yan, ZhiXin Xia, Xiang-Bin Wang,
- Abstract summary: Surface codes are promising for practical quantum error correction due to their high threshold and experimental feasibility.<n>We focus on several distinct types of correlated errors that could potentially arise from next-nearest-neighbor (NNN) coupling in quantum systems.<n>We find that errors correlated along straight lines possess a type of crucial symmetry, resulting in higher thresholds compared to other types of correlated errors.
- Score: 0.7328300048311823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface codes are promising for practical quantum error correction due to their high threshold and experimental feasibility. However, their performance under realistic noise conditions, particularly those involving correlated errors, requires further investigation. In this study, we investigate the impact of correlated errors on the error threshold. In particular, we focus on several distinct types of correlated errors that could potentially arise from next-nearest-neighbor (NNN) coupling in quantum systems. We present the analytical threshold of the surface code under these types of correlated noise, and find that errors correlated along straight lines possess a type of crucial symmetry, resulting in higher thresholds compared to other types of correlated errors. This deepens our insight into the threshold of surface code and hence facilitates a more robust design of quantum circuits with a higher noise threshold.
Related papers
- Detrimental non-Markovian errors for surface code memory [0.5490714603843316]
We study the structure of non-Markovian correlated errors and their impact on surface code memory performance.
Our analysis shows that while not all temporally correlated structures are detrimental, certain structures, particularly multi-time "streaky" correlations, can severely degrade logical error rate scaling.
arXiv Detail & Related papers (2024-10-31T09:52:21Z) - Purity benchmarking study of error coherence in a single Xmon qubit [0.0]
We simultaneously measure the coherence noise budget across two different operational frequencies.
Incoherent errors, which predominate in overall error rates, exhibit minimal frequency dependence.
Coherent errors, although less prevalent, show significant sensitivity to operational frequency variations and telegraphic noise.
arXiv Detail & Related papers (2024-07-10T18:01:04Z) - Modeling error correction with Lindblad dynamics and approximate channels [0.0]
We study how different approximations of the noise capture the success rate of a code.<n>A Pauli approximation going beyond a single-qubit channel is sensitive to the details of the noise, state, and decoder.
arXiv Detail & Related papers (2024-02-26T16:48:34Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Quantum error correction with an Ising machine under circuit-level noise [0.4977217779934656]
We develop a decoder for circuit-level noise that solves the error estimation problems as Ising-type optimization problems.
We confirm that the threshold theorem in the surface code under the circuitlevel noise is reproduced with an error threshold of approximately 0.4%.
arXiv Detail & Related papers (2023-08-01T08:21:22Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.