論文の概要: Coherent and Multi-modality Image Inpainting via Latent Space Optimization
- arxiv url: http://arxiv.org/abs/2407.08019v1
- Date: Wed, 10 Jul 2024 19:58:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:39:04.179446
- Title: Coherent and Multi-modality Image Inpainting via Latent Space Optimization
- Title(参考訳): 遅延空間最適化によるコヒーレント・マルチモーダリティ画像の描画
- Authors: Lingzhi Pan, Tong Zhang, Bingyuan Chen, Qi Zhou, Wei Ke, Sabine Süsstrunk, Mathieu Salzmann,
- Abstract要約: PILOT(intextbfPainting vtextbfIa textbfOptextbfTimization)は、新しいテキストセマンティック中央化とテキストセマンティック保存損失に基づく最適化手法である。
本手法は,背景とのコヒーレンスを維持しつつ,ユーザが提供するプロンプトに対して高い忠実度を示す塗装領域を生成できる潜時空間を探索する。
- 参考スコア(独自算出の注目度): 61.99406669027195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (in\textbf{P}ainting v\textbf{I}a \textbf{L}atent \textbf{O}p\textbf{T}imization), an optimization approach grounded on a novel \textit{semantic centralization} and \textit{background preservation loss}. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.
- Abstract(参考訳): 拡散確率モデル (DDPMs) の発達に伴い, 画像のインパインティングは, 近辺の領域に基づく情報入力から, テキスト, 模範画像, スケッチなどの様々なプロンプトに基づくコンテント生成へと大きく発展してきた。
しかし、モデル微調整や遅延ベクトルの単純な結合のような既存の手法は、しばしば、塗装された領域と背景の間の過度な適合と不整合による生成失敗をもたらす。
本稿では,現在の大規模拡散モデルが,さらなるチューニングを行なわずに現実的な画像を生成するのに十分強力である,と論じる。
したがって、PILOT (in\textbf{P}ainting v\textbf{I}a \textbf{L}atent \textbf{O}p\textbf{T}imization) を導入する。
本手法は,背景とのコヒーレンスを維持しつつ,ユーザが提供するプロンプトに対して高い忠実度を示す塗装領域を生成できる潜時空間を探索する。
さらに,最適化コストと画像品質のバランスをとる戦略を提案し,生成効率を大幅に向上させる。
提案手法は,ControlNetやDreamBoothなどの事前学習モデルとシームレスに統合され,マルチモーダル編集ツールへのデプロイに適している。
質的および定量的評価により、PILOTは、提供されたプロンプトに応じて、より一貫性があり、多様性があり、忠実な塗布された領域を生成することにより、既存のアプローチよりも優れていることが示された。
関連論文リスト
- Weak Supervision Dynamic KL-Weighted Diffusion Models Guided by Large Language Models [0.0]
本稿では,大言語モデルと拡散モデルを組み合わせることで,テキスト・画像生成を改善する新しい手法を提案する。
提案手法は, 学習済みLLMから意味的理解を取り入れ, 生成過程の導出を行う。
本手法は,テキスト記述による画像の視覚的品質とアライメントを大幅に改善する。
論文 参考訳(メタデータ) (2025-02-02T15:43:13Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
次世代の予測モデルとして, ISRフレームワークの視覚的自己回帰モデルを提案する。
大規模データを収集し、ロバストな生成先行情報を得るためのトレーニングプロセスを設計する。
論文 参考訳(メタデータ) (2025-01-31T09:53:47Z) - Diffusion Models with Anisotropic Gaussian Splatting for Image Inpainting [0.0]
本研究では,拡散モデルと異方性ガウススプラッティングを組み合わせ,局所構造とグローバルコンテキストの両方を効果的に捉える新しい塗装法を提案する。
提案手法は最先端技術より優れ, 構造的整合性とテクスチャリアリズムを向上した視覚的可視性のある結果が得られる。
論文 参考訳(メタデータ) (2024-12-02T16:29:06Z) - Training-Free Sketch-Guided Diffusion with Latent Optimization [22.94468603089249]
本稿では,既存のテキスト・画像生成モデルを拡張してスケッチを付加条件として組み込む,革新的なトレーニングフリーパイプラインを提案する。
入力スケッチによく似たレイアウトと構造を持つ新しい画像を生成するために,これらのスケッチの中核となる特徴を拡散モデルのクロスアテンションマップを用いて追跡できることを見出した。
本稿では, 生成過程の中間段階において, 雑音に富んだ遅延を洗練させる手法である潜時最適化を導入する。
論文 参考訳(メタデータ) (2024-08-31T00:44:03Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - DreamDrone: Text-to-Image Diffusion Models are Zero-shot Perpetual View Generators [56.994967294931286]
テキストプロンプトからフライスルーシーンを生成する新しいゼロショット・トレーニングフリーパイプラインであるDreamDroneを紹介する。
我々は、高品質な画像生成と非有界な一般化能力のために、事前訓練されたテキスト・画像拡散モデルの中間潜時符号を明示的に修正することを提唱する。
論文 参考訳(メタデータ) (2023-12-14T08:42:26Z) - Image Inpainting via Tractable Steering of Diffusion Models [48.16994134964729]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - FreePIH: Training-Free Painterly Image Harmonization with Diffusion
Model [19.170302996189335]
我々のFreePIH法は,フォアグラウンド画像スタイル転送のためのプラグインモジュールとしてデノナイズプロセスを利用する。
我々は,潜伏空間における前景オブジェクトの内容と安定性の整合性を強制するために,マルチスケール機能を活用している。
我々の手法は、代表的基準を大きなマージンで超えることができる。
論文 参考訳(メタデータ) (2023-11-25T04:23:49Z) - SDM: Spatial Diffusion Model for Large Hole Image Inpainting [106.90795513361498]
本稿では,空間拡散モデル(SDM)を提案する。
また,提案手法は非結合確率モデルと空間拡散スキームにより,高品質な大穴工法を実現する。
論文 参考訳(メタデータ) (2022-12-06T13:30:18Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。