Quantum information recast via multiresolution in $L_2(0,1]$
- URL: http://arxiv.org/abs/2407.08024v1
- Date: Wed, 10 Jul 2024 20:05:51 GMT
- Title: Quantum information recast via multiresolution in $L_2(0,1]$
- Authors: Mandana Bidarvand, Artur Sowa,
- Abstract summary: We present a multiresolution approach to the theory of quantum information.
It arose from an effort to develop a systematic mathematical approach to the analysis of an infinite array of qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a multiresolution approach to the theory of quantum information. It arose from an effort to develop a systematic mathematical approach to the analysis of an infinite array of qubits, i.e., a structure that may be interpreted as a quantum metamaterial. Foundational to our approach are two mathematical constructions with classical roots: the Borel isomorphism and the Haar basis. Here, these constructions are intertwined to establish an identification between $L_2(0,1]$ and the Hilbert space of an infinite array of qubits and to enable analysis of operators that act on arrays of qubits (either finite or infinite). The fusion of these two concepts empowers us to represent quantum operations and observables through geometric operators. As an unexpected upshot, we observe that the fundamental concept of calculus is inherent in an infinite array of qubits; indeed, the antiderivative arises as a natural and indispensable operator in this context.
Related papers
- Exact path integrals on half-line in quantum cosmology with a fluid clock and aspects of operator ordering ambiguity [0.0]
We perform $textitexact$ half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock.
We argue that a particular ordering prescription in the quantum theory can preserve two symmetries.
arXiv Detail & Related papers (2025-01-20T19:00:02Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Complexification of Quantum Signal Processing and its Ramifications [0.0]
We show a relation between a circuit defining a Floquet operator in a single period and its space-time dual defining QSP sequences for the Lie algebra sl$(2,mathbbC)$.
We also show that unitary representations of our QSP sequences exist, although they are infinite-dimensional and are defined for bosonic operators in the Heisenberg picture.
arXiv Detail & Related papers (2024-07-05T18:00:04Z) - Dilation theorem via Schr\"odingerisation, with applications to the
quantum simulation of differential equations [29.171574903651283]
Nagy's unitary dilation theorem in operator theory asserts the possibility of dilating a contraction into a unitary operator.
In this study, we demonstrate the viability of the recently devised Schr"odingerisation approach.
arXiv Detail & Related papers (2023-09-28T08:55:43Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Variational Quantum Continuous Optimization: a Cornerstone of Quantum
Mathematical Analysis [0.0]
We show how universal quantum computers can handle mathematical analysis calculations for functions with continuous domains.
The basic building block of our approach is a variational quantum circuit where each qubit encodes up to three continuous variables.
By combining this encoding with quantum state tomography, a variational quantum circuit of $n$ qubits can optimize functions of up to $3n$ continuous variables.
arXiv Detail & Related papers (2022-10-06T18:00:04Z) - Trace class operators and states in p-adic quantum mechanics [0.0]
We show that one can define a suitable space of trace class operators in the non-Archimedean setting.
The analogies, but also the several (highly non-trivial) differences, with respect to the case of standard quantum mechanics in a complex Hilbert space are analyzed.
arXiv Detail & Related papers (2022-10-04T12:44:22Z) - Quantum representation of finite groups [0.0]
The concept of quantum representation of finite groups (QRFG) has been a fundamental aspect of quantum computing for quite some time.
We provide a formal definition of this concept using both group theory and differential geometry.
Our work proves the existence of a quantum representation for any finite group and outlines two methods for translating each generator of the group into a quantum circuit.
arXiv Detail & Related papers (2022-09-29T18:01:03Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.