Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes
- URL: http://arxiv.org/abs/2407.08107v1
- Date: Thu, 11 Jul 2024 00:51:32 GMT
- Title: Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes
- Authors: MohammadAmin Ansari Khoushabar, Parviz Ghafariasl,
- Abstract summary: This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sepsis, a critical condition from the body's response to infection, poses a major global health crisis affecting all age groups. Timely detection and intervention are crucial for reducing healthcare expenses and improving patient outcomes. This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment, highlighting the need for advanced approaches. We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset. Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve. Results show that the meta-ensemble model outperforms individual models, achieving an AUC-ROC score of 0.96, indicating superior predictive accuracy for early sepsis detection. The Random Forest model also performs well with an AUC-ROC score of 0.95, while Extreme Gradient Boosting and Decision Tree models score 0.94 and 0.90, respectively.
Related papers
- Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
This research aims to develop an interpretable and accurate ML model to help clinical professionals predict in-hospital mortality.
We analyzed ICU patient records from the MIMIC-III database based on specific criteria and extracted relevant data.
The Random Forest model was the most effective in predicting sepsis-related in-hospital mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - The Consequences of the Framing of Machine Learning Risk Prediction
Models: Evaluation of Sepsis in General Wards [0.0]
We evaluate how framing affects model performance and model learning in four different approaches.
We analysed structured secondary healthcare data from 221,283 citizens from four Danish municipalities.
arXiv Detail & Related papers (2021-01-26T14:00:05Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.