Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques
- URL: http://arxiv.org/abs/2408.01144v1
- Date: Fri, 2 Aug 2024 09:44:18 GMT
- Title: Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques
- Authors: Negin Ashrafi, Armin Abdollahi, Maryam Pishgar,
- Abstract summary: Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk and imposes a considerable financial burden on patients and healthcare systems. Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources. Methods: We implemented six machine learning models using the MIMIC-III database. Our methodology included preprocessing steps, such as feature selection with CatBoost and expert opinion, addressing class imbalance with the Synthetic Minority Oversampling Technique (SMOTE), and rigorous model tuning through 5-fold cross-validation to optimize hyperparameters. Key models evaluated included SVM, Logistic Regression, Random Forest, XGBoost, ANN, and AdaBoost. Additionally, we conducted SHAP analysis to determine feature importance and performed an ablation study to assess feature impacts on model performance. Results: XGBoost outperformed the baseline models and the best existing literature. We used metrics, including AUC, Accuracy, Specificity, Sensitivity, F1 Score, PPV, and NPV. XGBoost demonstrated the highest performance with an AUC of 0.940 and an Accuracy of 0.875, which are 23.4% and 23.5% higher than the best results in the existing literature, with an AUC of 0.706 and an Accuracy of 0.640, respectively. This enhanced performance underscores the models' effectiveness in clinical settings. Conclusions: This study enhances the predictive modeling of VAP in TBI patients, improving early detection and intervention potential. Refined feature selection and advanced ensemble techniques significantly boosted model accuracy and reliability, offering promising directions for future clinical applications and medical diagnostics research.
Related papers
- Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions [0.10624941710159722]
Referral workflow inefficiencies contribute to suboptimal patient outcomes and higher healthcare costs.
In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries.
arXiv Detail & Related papers (2025-02-06T17:15:12Z) - A Foundational Generative Model for Breast Ultrasound Image Analysis [42.618964727896156]
Foundational models have emerged as powerful tools for addressing various tasks in clinical settings.
We present BUSGen, the first foundational generative model specifically designed for breast ultrasound analysis.
With few-shot adaptation, BUSGen can generate repositories of realistic and informative task-specific data.
arXiv Detail & Related papers (2025-01-12T16:39:13Z) - Assessing Reusability of Deep Learning-Based Monotherapy Drug Response Prediction Models Trained with Omics Data [43.57729817547386]
Cancer drug response prediction models present a promising approach towards precision oncology.
Deep learning (DL) methods have shown great potential in this area.
This highlights the need for reusable and adaptable models that can be improved and tested by the wider scientific community.
arXiv Detail & Related papers (2024-09-18T16:08:28Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.
Previous studies employing machine learning faced limitations in feature selection and model interpretability.
This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
arXiv Detail & Related papers (2024-07-11T00:51:32Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.