論文の概要: Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding
- arxiv url: http://arxiv.org/abs/2407.08150v1
- Date: Thu, 11 Jul 2024 03:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 19:08:29.554207
- Title: Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding
- Title(参考訳): ハイパーグラフ多モード大言語モデル:映像理解のための不均一応答評価のための脳波と視線追跡モダリティの爆発
- Authors: Minghui Wu, Chenxu Zhao, Anyang Su, Donglin Di, Tianyu Fu, Da An, Min He, Ya Gao, Meng Ma, Kun Yan, Ping Wang,
- Abstract要約: ビデオの創造性と内容の理解はしばしば個人によって異なり、年齢、経験、性別によって焦点や認知レベルが異なる。
実世界のアプリケーションとのギャップを埋めるために、textbfSubjective textbfResponse textbfIndicators for textbf— textbfVideos dataset, すなわちSRI-ADVを導入する。
映像コンテンツの認知的理解度を分析・評価するタスクとプロトコルを開発した。
- 参考スコア(独自算出の注目度): 25.4933695784155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale \textbf{S}ubjective \textbf{R}esponse \textbf{I}ndicators for \textbf{A}dvertisement \textbf{V}ideos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a \textbf{H}ypergraph \textbf{M}ulti-modal \textbf{L}arge \textbf{L}anguage \textbf{M}odel (HMLLM) to explore the associations among different demographics, video elements, EEG and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at \url{https://github.com/suay1113/HMLLM}.
- Abstract(参考訳): ビデオの創造性と内容の理解はしばしば個人によって異なり、年齢、経験、性別によって焦点や認知レベルが異なる。
現在この分野には研究の欠如があり、既存のベンチマークにはいくつかの欠点がある。
1) モダリティの限定数及び制限長の回答
2)ビデオの内容とシナリオは過度に単調であり,過度に単純化された情動や情動を伝達する。
実世界のアプリケーションにギャップを埋めるために、大規模な \textbf{S}ubjective \textbf{R}esponse \textbf{I}ndicators for \textbf{A}dvertisement \textbf{V}ideos dataset、すなわち SRI-ADV を導入する。
具体的には、脳波(EEG)と視線追跡領域の実際の変化を異なる人口層から収集し、同じ映像コンテンツを視聴した。
このマルチモーダルデータセットを用いて、異なるユーザ間での映像コンテンツの認知的理解度を分析し評価するタスクとプロトコルを開発した。
このデータセットとともに、異なる人口層、ビデオ要素、脳波、眼球追跡指標の関連性を調べるために、 \textbf{H}ypergraph \textbf{M}ulti-modal \textbf{L}arge \textbf{L}anguage \textbf{M}odel (HMLLM) を設計した。
HMLLMは、豊富なモダリティにセマンティックギャップを埋め、異なるモダリティを超えて情報を統合して論理的推論を行うことができる。
SRI-ADVおよび他のビデオベース生成性能ベンチマークの大規模実験により,本手法の有効性が示された。
コードとデータセットは \url{https://github.com/suay1113/HMLLM} でリリースされる。
関連論文リスト
- LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
映像刺激によって引き起こされるfMRI信号から視覚的意味情報を再構成するためのLCMに基づく手法を提案する。
我々は、適応器を備えたfMRIエンコーダに微調整技術を用いて、脳の反応を映像刺激に合わせた潜在表現に変換する。
特に,視覚的セマンティック情報と脳反応のアライメントを高めるために,自己教師付きドメイン適応手法を統合する。
論文 参考訳(メタデータ) (2024-09-26T15:57:08Z) - Video Emotion Open-vocabulary Recognition Based on Multimodal Large Language Model [5.301672905886949]
本稿では、MLLM技術を用いてビデオからオープン語彙感情ラベルを生成する方法を紹介する。
MER2024課題のMER-OV(Open-Word Emotion Recognition)において,本手法は重要な優位性を実現し,複雑な感情計算の能力に優れていた。
論文 参考訳(メタデータ) (2024-08-21T02:17:18Z) - Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild [45.29814349246784]
マルチモーダルな大言語モデル(LLM)は、異なる非テクストのモダリティからテキストに変換される可能性のある明示的な非言語的手がかりに依存している。
本稿では,ビデオにおける複合マルチモーダルERのテキストと特徴に基づくアプローチの可能性について比較する。
論文 参考訳(メタデータ) (2024-07-17T18:01:25Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
我々は、CinePileという新しいデータセットとベンチマークを提示する。
包括的データセットは305,000の多重選択質問(MCQ)から構成されており、様々な視覚的・マルチモーダル的な側面をカバーしている。
トレーニングスプリットに関して、オープンソースのVideo-LLMを微調整し、データセットのテストスプリット上で、オープンソースとプロプライエタリなビデオ中心LLMの両方を評価しました。
論文 参考訳(メタデータ) (2024-05-14T17:59:02Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUEベンチマークは、幅広いビデオジャンル、ビデオの長さ、データボリューム、タスクの難易度をカバーすることを目的としている。
大規模なVidL事前学習による各種ベースライン法の評価を行った。
我々の最高のモデルと人間のパフォーマンスの間の大きなギャップは、先進的なVidLモデルの将来の研究を要求する。
論文 参考訳(メタデータ) (2021-06-08T18:34:21Z) - MERLOT: Multimodal Neural Script Knowledge Models [74.05631672657452]
我々はMERLOTを紹介した。MERLOTは、翻訳された音声で何百万ものYouTubeビデオを視聴することで、マルチモーダルなスクリプト知識を学習するモデルである。
MERLOTは、時間的コモンセンスの強力なアウトオブボックス表現を示し、12の異なるビデオQAデータセット上で最先端のパフォーマンスを達成する。
Visual Commonsense Reasoning では、MERLOT が80.6%の精度で正解し、同じ大きさの最先端のモデルを3%以上上回っている。
論文 参考訳(メタデータ) (2021-06-04T17:57:39Z) - See, Hear, Read: Leveraging Multimodality with Guided Attention for
Abstractive Text Summarization [14.881597737762316]
我々は,NDSS,ICML,NeurIPSなどの著名な学術カンファレンスのプレゼンテーションから収集した,様々な期間のビデオを用いた抽象テキスト要約のための最初の大規模データセットを紹介する。
次に,多モード変換器をベースとしたデコーダのみの言語モデルであるnameを提案し,テキスト要約タスクの様々な入力モードにおけるモーダル内およびモーダル間ダイナミクスを本質的にキャプチャする。
論文 参考訳(メタデータ) (2021-05-20T08:56:33Z) - Video Understanding as Machine Translation [53.59298393079866]
我々は、単一の統合フレームワークを用いて、様々なダウンストリームビデオ理解タスクに取り組む。
映像分類(EPIC-Kitchens)、質問応答(TVQA)、キャプション(TVC, YouCook2, MSR-VTT)など、いくつかのダウンストリームタスクにおいて、現状よりもパフォーマンスの向上が報告されている。
論文 参考訳(メタデータ) (2020-06-12T14:07:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。