Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple
Machine Learning Models
- URL: http://arxiv.org/abs/2206.15079v1
- Date: Thu, 30 Jun 2022 07:24:08 GMT
- Title: Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple
Machine Learning Models
- Authors: Christof Imhof, Ioan-Sorin Comsa, Martin Hlosta, Behnam Parsaeifard,
Ivan Moser, and Per Bergamin
- Abstract summary: Procrastination, the irrational delay of tasks, is a common occurrence in online learning.
Research focusing on such predictions is scarce.
Studies involving different types of predictors and comparisons between the predictive performance of various methods are virtually non-existent.
- Score: 0.2963240482383777
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Procrastination, the irrational delay of tasks, is a common occurrence in
online learning. Potential negative consequences include higher risk of
drop-outs, increased stress, and reduced mood. Due to the rise of learning
management systems and learning analytics, indicators of such behavior can be
detected, enabling predictions of future procrastination and other dilatory
behavior. However, research focusing on such predictions is scarce. Moreover,
studies involving different types of predictors and comparisons between the
predictive performance of various methods are virtually non-existent. In this
study, we aim to fill these research gaps by analyzing the performance of
multiple machine learning algorithms when predicting the delayed or timely
submission of online assignments in a higher education setting with two
categories of predictors: subjective, questionnaire-based variables and
objective, log-data based indicators extracted from a learning management
system. The results show that models with objective predictors consistently
outperform models with subjective predictors, and a combination of both
variable types perform slightly better. For each of these three options, a
different approach prevailed (Gradient Boosting Machines for the subjective,
Bayesian multilevel models for the objective, and Random Forest for the
combined predictors). We conclude that careful attention should be paid to the
selection of predictors and algorithms before implementing such models in
learning management systems.
Related papers
- An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification [0.0]
This paper examines the impact of balancing methods on predictive multiplicity using the Rashomon effect.
It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models.
arXiv Detail & Related papers (2024-03-22T13:08:22Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
We present EAMDrift, a novel method that combines forecasts from multiple individual predictors by weighting each prediction according to a performance metric.
EAMDrift is designed to automatically adapt to out-of-distribution patterns in data and identify the most appropriate models to use at each moment.
Our study on real-world datasets shows that EAMDrift outperforms individual baseline models by 20% and achieves comparable accuracy results to non-interpretable ensemble models.
arXiv Detail & Related papers (2023-05-31T13:25:26Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Discriminative, Generative and Self-Supervised Approaches for
Target-Agnostic Learning [8.666667951130892]
generative and self-supervised learning models are shown to perform well at the task.
Our derived theorem for the pseudo-likelihood theory also shows that they are related for inferring a joint distribution model.
arXiv Detail & Related papers (2020-11-12T15:03:40Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.