Magnon squeezing via reservoir-engineered optomagnomechanics
- URL: http://arxiv.org/abs/2407.08186v2
- Date: Wed, 9 Oct 2024 15:04:18 GMT
- Title: Magnon squeezing via reservoir-engineered optomagnomechanics
- Authors: Zhi-Yuan Fan, Huai-Bing Zhu, Hao-Tian Li, Jie Li,
- Abstract summary: We show how to prepare magnonic squeezed states in an optomagnomechanical system.
We discuss two scenarios depending on whether the magnomechanical coupling is linear or dispersive.
The proposed magnonic squeezed states find promising applications in quantum information processing and quantum sensing using magnons.
- Score: 7.460146374938597
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We show how to prepare magnonic squeezed states in an optomagnomechanical system, in which magnetostriction induced mechanical displacement couples to an optical cavity via radiation pressure. We discuss two scenarios depending on whether the magnomechanical coupling is linear or dispersive. We show that in both cases the strong mechanical squeezing obtained via two-tone driving of the optical cavity can be efficiently transferred to the magnon mode. In the linear coupling case, stationary magnon squeezing is achieved; while in the dispersive coupling case, a transient magnonic squeezed state is prepared in a two-step protocol. The proposed magnonic squeezed states find promising applications in quantum information processing and quantum sensing using magnons.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling [8.13512137938837]
We show how to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system.
The work may find promising applications in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.
arXiv Detail & Related papers (2024-01-04T13:58:01Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Stationary optomagnonic entanglement and magnon-to-optics quantum state
transfer via opto-magnomechanics [8.573839921517958]
We show how to prepare a steady-state entangled state between magnons and optical photons in an opto-magnomechanical configuration.
The demonstrated entanglement and state-readout protocols in such a novel opto-magnomechanical configuration allow us to optically control, prepare, and read out quantum states of collective spin excitations in solids.
arXiv Detail & Related papers (2022-06-12T07:52:08Z) - Magnon squeezing enhanced entanglement in a cavity magnomechanical
system [3.5686258173451995]
We investigate the generation of entanglement in a cavity magnomechanical system.
By introducing a squeezing of the magnon mode, the magnon-photon and the magnon-phonon entanglements are significantly enhanced.
This study provides a new idea for exploring the properties of quantum entanglement in the the cavity magnomechanical systems.
arXiv Detail & Related papers (2022-05-29T03:56:40Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Entangling the vibrational modes of two massive ferromagnetic spheres
using cavity magnomechanics [10.128856077021625]
We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic spheres in a dual-cavity magnomechanical system.
Our work demonstrates that cavity magnomechanical systems allow to prepare quantum entangled states at a more massive scale than currently possible with other schemes.
arXiv Detail & Related papers (2020-07-17T16:05:30Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.