A Text-to-Game Engine for UGC-Based Role-Playing Games
- URL: http://arxiv.org/abs/2407.08195v1
- Date: Thu, 11 Jul 2024 05:33:19 GMT
- Title: A Text-to-Game Engine for UGC-Based Role-Playing Games
- Authors: Lei Zhang, Xuezheng Peng, Shuyi Yang, Feiyang Wang,
- Abstract summary: This paper introduces a new framework for a text-to-game engine that utilizes foundation models to convert simple textual inputs into complex, interactive RPG experiences.
The engine dynamically renders the game story in a multi-modal format and adjusts the game character, environment, and mechanics in real-time in response to player actions.
- Score: 6.5715027492220734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The shift from professionally generated content (PGC) to user-generated content (UGC) has revolutionized various media formats, from text to video. With the rapid advancements in generative AI, a similar shift is set to transform the game industry, particularly in the realm of role-playing games (RPGs). This paper introduces a new framework for a text-to-game engine that utilizes foundation models to convert simple textual inputs into complex, interactive RPG experiences. The engine dynamically renders the game story in a multi-modal format and adjusts the game character, environment, and mechanics in real-time in response to player actions. Using this framework, we developed the "Zagii" game engine, which has successfully supported hundreds of RPG games across a diverse range of genres and facilitated tens of thousands of online user gameplay instances. This validates the effectiveness of our frame-work. Our work showcases the potential for a more open and democratized gaming paradigm, highlighting the transformative impact of generative AI on the game life cycle.
Related papers
- Unbounded: A Generative Infinite Game of Character Life Simulation [68.37260000219479]
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models.
We leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models.
arXiv Detail & Related papers (2024-10-24T17:59:31Z) - Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game descriptions and generate game-play processes.
We train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs.
arXiv Detail & Related papers (2024-10-17T11:16:27Z) - GAVEL: Generating Games Via Evolution and Language Models [40.896938709468465]
We explore the generation of novel games in the Ludii game description language.
We train a model that intelligently mutates and recombines games and mechanics expressed as code.
A sample of the generated games are available to play online through the Ludii portal.
arXiv Detail & Related papers (2024-07-12T16:08:44Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Towards a Holodeck-style Simulation Game [40.044978986425676]
Infinitia uses generative image and language models to reshape all aspects of the setting and NPCs based on a short description from the player.
Infinitia is implemented in the Unity engine with a server-client architecture.
It uses a multiplayer framework to allow humans to be present and interact in the simulation.
arXiv Detail & Related papers (2023-08-22T19:19:19Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Multi-Game Decision Transformers [49.257185338595434]
We show that a single transformer-based model can play a suite of up to 46 Atari games simultaneously at close-to-human performance.
We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning.
We find that our Multi-Game Decision Transformer models offer the best scalability and performance.
arXiv Detail & Related papers (2022-05-30T16:55:38Z) - Entity Embedding as Game Representation [0.9645196221785693]
We present an autoencoder for deriving what we call "entity embeddings"
In this paper we introduce the learned representation, along with some evidence towards its quality and future utility.
arXiv Detail & Related papers (2020-10-04T21:16:45Z) - Learning to Simulate Dynamic Environments with GameGAN [109.25308647431952]
In this paper, we aim to learn a simulator by simply watching an agent interact with an environment.
We introduce GameGAN, a generative model that learns to visually imitate a desired game by ingesting screenplay and keyboard actions during training.
arXiv Detail & Related papers (2020-05-25T14:10:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.