Static Vs. Agentic Game Master AI for Facilitating Solo Role-Playing Experiences
- URL: http://arxiv.org/abs/2502.19519v2
- Date: Thu, 06 Mar 2025 16:21:14 GMT
- Title: Static Vs. Agentic Game Master AI for Facilitating Solo Role-Playing Experiences
- Authors: Nicolai Hejlesen Jørgensen, Sarmilan Tharmabalan, Ilhan Aslan, Nicolai Brodersen Hansen, Timothy Merritt,
- Abstract summary: This paper presents a game master AI for single-player role-playing games.<n>The AI is designed to deliver interactive text-based narratives and experiences typically associated with multiplayer tabletop games like Dungeons & Dragons.
- Score: 3.383857646639421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a game master AI for single-player role-playing games. The AI is designed to deliver interactive text-based narratives and experiences typically associated with multiplayer tabletop games like Dungeons & Dragons. We report on the design process and the series of experiments to improve the functionality and experience design, resulting in two functional versions of the system. While v1 of our system uses simplified prompt engineering, v2 leverages a multi-agent architecture and the ReAct framework to include reasoning and action. A comparative evaluation demonstrates that v2 as an agentic system maintains play while significantly improving modularity and game experience, including immersion and curiosity. Our findings contribute to the evolution of AI-driven interactive fiction, highlighting new avenues for enhancing solo role-playing experiences.
Related papers
- AVA: Attentive VLM Agent for Mastering StarCraft II [56.07921367623274]
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience.
Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay.
arXiv Detail & Related papers (2025-03-07T12:54:25Z) - Towards Enhanced Immersion and Agency for LLM-based Interactive Drama [55.770617779283064]
This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency.<n>To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality.
arXiv Detail & Related papers (2025-02-25T06:06:16Z) - You Have Thirteen Hours in Which to Solve the Labyrinth: Enhancing AI Game Masters with Function Calling [35.721053667746716]
This paper presents a novel approach to enhance AI game masters by leveraging function calling in the context of the table-top role-playing game "Jim Henson's Labyrinth: The Adventure Game"
Our methodology involves integrating game-specific controls through functions, which we show improves the narrative quality and state update consistency of the AI game master.
arXiv Detail & Related papers (2024-09-11T02:03:51Z) - A Text-to-Game Engine for UGC-Based Role-Playing Games [6.5715027492220734]
This paper introduces a novel framework for a text-to-game engine that leverages foundation models to transform simple textual inputs into intricate, multi-modal RPG experiences.
The engine dynamically generates game narratives, integrating text, visuals, and mechanics, while adapting characters, environments, and gameplay in realtime based on player interactions.
arXiv Detail & Related papers (2024-07-11T05:33:19Z) - Toward Human-AI Alignment in Large-Scale Multi-Player Games [24.784173202415687]
We analyze extensive human gameplay data from Xbox's Bleeding Edge (100K+ games)
We find that while human players exhibit variability in fight-flight and explore-exploit behavior, AI players tend towards uniformity.
These stark differences underscore the need for interpretable evaluation, design, and integration of AI in human-aligned applications.
arXiv Detail & Related papers (2024-02-05T22:55:33Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
We introduce the first dataset specifically for Jubensha, including character scripts and game rules.
Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game.
To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills.
arXiv Detail & Related papers (2023-12-01T17:33:57Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
We introduce a benchmark named Tachikuma, comprising a Multiple character and novel Object based interaction Estimation task and a supporting dataset.
The dataset captures log data from real-time communications during gameplay, providing diverse, grounded, and complex interactions for further explorations.
We present a simple prompting baseline and evaluate its performance, demonstrating its effectiveness in enhancing interaction understanding.
arXiv Detail & Related papers (2023-07-24T07:40:59Z) - Designing Mixed-Initiative Video Games [0.0]
Snake Story is a mixed-initiative game where players can select AI-generated texts to write a story of a snake by playing a "Snake" like game.
A controlled experiment was conducted to investigate the dynamics of player-AI interactions with and without the game component in the designed interface.
arXiv Detail & Related papers (2023-07-08T01:45:25Z) - Read and Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals [69.76245723797368]
Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers.
Various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.
arXiv Detail & Related papers (2023-02-09T05:47:03Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
This work investigates how well an artificial agent can benefit from playing guessing games when later asked to perform on novel NLP downstream tasks such as Visual Question Answering (VQA)
We propose two ways to exploit playing guessing games: 1) a supervised learning scenario in which the agent learns to mimic successful guessing games and 2) a novel way for an agent to play by itself, called Self-play via Iterated Experience Learning (SPIEL)
arXiv Detail & Related papers (2021-01-31T10:30:48Z) - Learning to Simulate Dynamic Environments with GameGAN [109.25308647431952]
In this paper, we aim to learn a simulator by simply watching an agent interact with an environment.
We introduce GameGAN, a generative model that learns to visually imitate a desired game by ingesting screenplay and keyboard actions during training.
arXiv Detail & Related papers (2020-05-25T14:10:17Z) - Neural MMO v1.3: A Massively Multiagent Game Environment for Training
and Evaluating Neural Networks [48.5733173329785]
We present Neural MMO, a massively multiagent game environment inspired by MMOs.
We discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO.
arXiv Detail & Related papers (2020-01-31T18:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.