論文の概要: GAURA: Generalizable Approach for Unified Restoration and Rendering of Arbitrary Views
- arxiv url: http://arxiv.org/abs/2407.08221v1
- Date: Thu, 11 Jul 2024 06:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:39:04.618602
- Title: GAURA: Generalizable Approach for Unified Restoration and Rendering of Arbitrary Views
- Title(参考訳): ガウラ:任意視点の統一的復元とレンダリングのための一般化可能なアプローチ
- Authors: Vinayak Gupta, Rongali Simhachala Venkata Girish, Mukund Varma T, Ayush Tewari, Kaushik Mitra,
- Abstract要約: 本稿では,いくつかの劣化条件下で高忠実性新規ビュー合成が可能な一般化可能なニューラルレンダリング手法を提案する。
我々の手法であるGAURAは学習ベースであり、テスト時間シーン固有の最適化を必要としない。
- 参考スコア(独自算出の注目度): 28.47730275628715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural rendering methods can achieve near-photorealistic image synthesis of scenes from posed input images. However, when the images are imperfect, e.g., captured in very low-light conditions, state-of-the-art methods fail to reconstruct high-quality 3D scenes. Recent approaches have tried to address this limitation by modeling various degradation processes in the image formation model; however, this limits them to specific image degradations. In this paper, we propose a generalizable neural rendering method that can perform high-fidelity novel view synthesis under several degradations. Our method, GAURA, is learning-based and does not require any test-time scene-specific optimization. It is trained on a synthetic dataset that includes several degradation types. GAURA outperforms state-of-the-art methods on several benchmarks for low-light enhancement, dehazing, deraining, and on-par for motion deblurring. Further, our model can be efficiently fine-tuned to any new incoming degradation using minimal data. We thus demonstrate adaptation results on two unseen degradations, desnowing and removing defocus blur. Code and video results are available at vinayak-vg.github.io/GAURA.
- Abstract(参考訳): ニューラルレンダリング法は、ポーズされた入力画像からシーンの近光写実的画像合成を実現することができる。
しかし、画像が不完全である場合、例えば、非常に低照度で撮影された場合、最先端の手法では高品質な3Dシーンを再構成できない。
近年, 画像形成モデルにおける様々な劣化過程をモデル化することによって, この限界に対処する試みがなされている。
本稿では,高忠実度新規ビュー合成を複数の劣化下で実現可能な一般化可能なニューラルレンダリング手法を提案する。
我々の手法であるGAURAは学習ベースであり、テスト時間シーン固有の最適化を必要としない。
これは、いくつかの分解タイプを含む合成データセットでトレーニングされる。
GAURAは、低照度向上、デハジング、デラリニング、動作不良のためのオンパーのためのいくつかのベンチマークで最先端の手法より優れている。
さらに,本モデルでは,最小限のデータを用いて,新たな劣化に対して効率よく微調整することができる。
そこで我々は2つの目に見えない劣化に対して適応結果を示し,デフォーカスのぼかしの発見と除去を行った。
コードとビデオはvinayak-vg.github.io/GAURAで公開されている。
関連論文リスト
- Towards Degradation-Robust Reconstruction in Generalizable NeRF [58.33351079982745]
GNeRF(Generalizable Radiance Field)は,シーンごとの最適化を回避する手段として有効であることが証明されている。
GNeRFの強靭性は, ソース画像に現れる様々な種類の劣化に対して限定的に研究されている。
論文 参考訳(メタデータ) (2024-11-18T16:13:47Z) - DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
本稿では, 精度, 精細度, 高忠実度画像復元のために, 劣化対応言語プロンプトを活用することを提案する。
提案手法は,新しい最先端の知覚品質レベルを実現する。
論文 参考訳(メタデータ) (2024-06-24T09:30:36Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
この研究は、能動的視覚言語モデルと合成分解パイプラインを活用して、野生(ワイルドIR)における画像復元を学習する。
我々の基底拡散モデルは画像復元SDE(IR-SDE)である。
論文 参考訳(メタデータ) (2024-04-15T12:34:21Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion [88.8198344514677]
我々は、インスタンス固有のステップ利用ポリシーを学ぶために設計されたフレームワークであるAdaDiffを紹介する。
AdaDiffはポリシー勾配法を用いて最適化され、慎重に設計された報酬関数を最大化する。
提案手法は,固定された50ステップを用いて,ベースラインと比較して視覚的品質の点で同様の結果が得られる。
論文 参考訳(メタデータ) (2023-11-24T11:20:38Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Hybrid Neural Rendering for Large-Scale Scenes with Motion Blur [68.24599239479326]
画像ベース表現とニューラル3D表現を結合して高品質なビュー一貫性のある画像をレンダリングするハイブリッドなニューラルレンダリングモデルを開発した。
我々のモデルは、新しいビュー合成のための最先端のポイントベース手法を超越している。
論文 参考訳(メタデータ) (2023-04-25T08:36:33Z) - Learning Degradation Representations for Image Deblurring [37.80709422920307]
ぼやけた画像の空間適応的劣化表現を学習するための枠組みを提案する。
劣化表現の表現性を改善するために、新しい共同画像再生・復調学習プロセスを提案する。
GoProとRealBlurのデータセットの実験では、学習した劣化表現を用いたデブロアリングフレームワークが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-08-10T09:53:16Z) - One Size Fits All: Hypernetwork for Tunable Image Restoration [5.33024001730262]
我々は,複数のモデルの精度を向上し,異なるレベルの劣化に最適化した,可変画像復元のための新しい手法を提案する。
我々のモデルは、一定数のパラメータと様々な画像復元タスクで必要に応じて、最小限の劣化レベルを復元するように最適化することができる。
論文 参考訳(メタデータ) (2022-06-13T08:33:14Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。