論文の概要: Feature Diversification and Adaptation for Federated Domain Generalization
- arxiv url: http://arxiv.org/abs/2407.08245v1
- Date: Thu, 11 Jul 2024 07:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:39:04.585407
- Title: Feature Diversification and Adaptation for Federated Domain Generalization
- Title(参考訳): Federated Domain Generalizationのための特徴の多様化と適応
- Authors: Seunghan Yang, Seokeon Choi, Hyunsin Park, Sungha Choi, Simyung Chang, Sungrack Yun,
- Abstract要約: 実世界のアプリケーションでは、ローカルクライアントは、しばしば制限されたドメイン内で動作し、クライアント間でのドメインシフトにつながる。
フェデレーション(federated feature diversification)の概念を導入し,プライバシを保ちながら,ローカルモデルによるクライアント不変表現の学習を支援する。
我々のグローバルモデルでは、目に見えないテスト領域データに対して堅牢な性能を示す。
- 参考スコア(独自算出の注目度): 27.646565383214227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning, a distributed learning paradigm, utilizes multiple clients to build a robust global model. In real-world applications, local clients often operate within their limited domains, leading to a `domain shift' across clients. Privacy concerns limit each client's learning to its own domain data, which increase the risk of overfitting. Moreover, the process of aggregating models trained on own limited domain can be potentially lead to a significant degradation in the global model performance. To deal with these challenges, we introduce the concept of federated feature diversification. Each client diversifies the own limited domain data by leveraging global feature statistics, i.e., the aggregated average statistics over all participating clients, shared through the global model's parameters. This data diversification helps local models to learn client-invariant representations while preserving privacy. Our resultant global model shows robust performance on unseen test domain data. To enhance performance further, we develop an instance-adaptive inference approach tailored for test domain data. Our proposed instance feature adapter dynamically adjusts feature statistics to align with the test input, thereby reducing the domain gap between the test and training domains. We show that our method achieves state-of-the-art performance on several domain generalization benchmarks within a federated learning setting.
- Abstract(参考訳): 分散学習パラダイムであるフェデレーション学習は、複数のクライアントを使用して堅牢なグローバルモデルを構築する。
実世界のアプリケーションでは、ローカルクライアントは制限されたドメイン内で運用されることが多く、クライアント間で‘ドメインシフト’が発生する。
プライバシに関する懸念は、各クライアントの学習を自身のドメインデータに制限することで、過度な適合のリスクを増大させる。
さらに、自身の限られたドメインでトレーニングされたモデルを集約するプロセスは、グローバルモデルのパフォーマンスを著しく低下させる可能性がある。
これらの課題に対処するために、フェデレートされた特徴の多様化の概念を導入する。
各クライアントは、グローバルな特徴統計、すなわちグローバルモデルのパラメータを通して共有される全クライアントの平均統計を利用して、独自の制限されたドメインデータを多様化する。
このデータの多様化は、プライバシを保護しながら、ローカルモデルがクライアント不変表現を学習するのに役立つ。
我々のグローバルモデルでは、目に見えないテスト領域データに対して堅牢な性能を示す。
さらに性能を向上させるために,テスト領域データに適したインスタンス適応型推論手法を開発した。
提案するインスタンス機能アダプタは,テスト入力に合わせて機能統計を動的に調整し,テスト領域とトレーニング領域のドメインギャップを低減する。
本手法は,フェデレートされた学習環境において,いくつかの領域一般化ベンチマークにおける最先端性能を実現する。
関連論文リスト
- Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization [1.1534313664323637]
ドメインシフト(Domain shift)は、マシンラーニングにおいて、目に見えないドメインでテストした場合に、モデルのパフォーマンス低下に悩まされるという深刻な問題である。
FedDGは、プライバシー保護の方法で協調的なクライアントを使用してグローバルモデルをトレーニングしようと試みている。
本稿では, 誘導正規化方式に依存するFedDGの新しいアーキテクチャ手法,すなわちgPerXANを紹介する。
論文 参考訳(メタデータ) (2024-03-22T20:22:08Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
ドメインシフトは、クロスドメイン顔表情認識(CD-FER)において重要な課題となる
適応的グローバルローカル表現学習・選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:21:41Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
我々は,Amortized Bayesian Meta-Learningを通じて,パーソナライズド・フェデレーション・ラーニングの新しい視点を紹介する。
具体的には,クライアント間の階層的変動推論を用いたemphFedABMLという新しいアルゴリズムを提案する。
我々の理論解析は平均一般化誤差の上限を提供し、未知のデータに対する一般化性能を保証する。
論文 参考訳(メタデータ) (2023-07-05T11:58:58Z) - FACT: Federated Adversarial Cross Training [0.0]
Federated Adrial Cross Training (FACT)は、ソースクライアント間の暗黙のドメイン差を利用して、ターゲットドメイン内のドメインシフトを特定する。
我々は、FACTが最先端のフェデレーション、非フェデレーション、およびソースフリードメイン適応モデルより優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-06-01T12:25:43Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
人物再識別(re-ID)におけるフェデレーションドメイン一般化(FedDG)の問題について検討する。
一般化された局所的・グローバルなモデルを学ぶための多様な特徴を創出する手法として,DFH (Domain and Feature Hallucinating) を提案する。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-05T09:15:13Z) - GRP-FED: Addressing Client Imbalance in Federated Learning via
Global-Regularized Personalization [6.592268037926868]
本稿では,データ不均衡問題に対処するため,Global-Regularized Personalization (GRP-FED)を提案する。
適応アグリゲーションでは、グローバルモデルは複数のクライアントを公平に扱い、グローバルな長期的問題を緩和する。
我々のGRP-FEDは,グローバルシナリオとローカルシナリオの両方で改善されている。
論文 参考訳(メタデータ) (2021-08-31T14:09:04Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。