論文の概要: Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating
- arxiv url: http://arxiv.org/abs/2203.02689v2
- Date: Tue, 8 Mar 2022 12:04:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 07:06:31.930819
- Title: Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating
- Title(参考訳): ドメインと特徴の幻覚を通してのFederated and Generalized Person Re-identification
- Authors: Fengxiang Yang, Zhun Zhong, Zhiming Luo, Shaozi Li, Nicu Sebe
- Abstract要約: 人物再識別(re-ID)におけるフェデレーションドメイン一般化(FedDG)の問題について検討する。
一般化された局所的・グローバルなモデルを学ぶための多様な特徴を創出する手法として,DFH (Domain and Feature Hallucinating) を提案する。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
- 参考スコア(独自算出の注目度): 88.77196261300699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the problem of federated domain generalization
(FedDG) for person re-identification (re-ID), which aims to learn a generalized
model with multiple decentralized labeled source domains. An empirical method
(FedAvg) trains local models individually and averages them to obtain the
global model for further local fine-tuning or deploying in unseen target
domains. One drawback of FedAvg is neglecting the data distributions of other
clients during local training, making the local model overfit local data and
producing a poorly-generalized global model. To solve this problem, we propose
a novel method, called "Domain and Feature Hallucinating (DFH)", to produce
diverse features for learning generalized local and global models.
Specifically, after each model aggregation process, we share the Domain-level
Feature Statistics (DFS) among different clients without violating data
privacy. During local training, the DFS are used to synthesize novel domain
statistics with the proposed domain hallucinating, which is achieved by
re-weighting DFS with random weights. Then, we propose feature hallucinating to
diversify local features by scaling and shifting them to the distribution of
the obtained novel domain. The synthesized novel features retain the original
pair-wise similarities, enabling us to utilize them to optimize the model in a
supervised manner. Extensive experiments verify that the proposed DFH can
effectively improve the generalization ability of the global model. Our method
achieves the state-of-the-art performance for FedDG on four large-scale re-ID
benchmarks.
- Abstract(参考訳): 本稿では,複数の分散ラベル付きソースドメインを用いた一般化モデルを学習することを目的とした,人物再識別(re-ID)のためのフェデレーションドメイン一般化(FedDG)の問題について検討する。
実証的手法(FedAvg)は、個別に局所モデルを訓練し、それらを平均化し、局所的な微調整や未確認ターゲットドメインへの展開のためのグローバルモデルを得る。
fedavgの欠点のひとつは、ローカルトレーニング中に他のクライアントのデータ分散を無視し、ローカルモデルがローカルデータに過度に適合し、一般化されていないグローバルモデルを生成することだ。
そこで本研究では,局所的・大域的モデルを学習するための多種多様な特徴を生み出すために,DFH(Domain and Feature Hallucinating)と呼ばれる新しい手法を提案する。
具体的には、各モデル集約プロセスの後、データプライバシに違反することなく、異なるクライアント間でドメインレベルの特徴統計(DFS)を共有します。
局所訓練中、DFSは、ランダムな重み付けでDFSを再重み付けすることで達成される提案されたドメイン幻覚を用いて、新しいドメイン統計を合成するために使用される。
そこで本研究では,局所的な特徴をスケールし,得られた新規ドメインの分布にシフトすることで多様化する機能幻覚を提案する。
合成された新しい特徴は、元のペアワイズ類似性を保ち、モデルを教師付き方式で最適化することができる。
広範な実験により,提案するdfhがグローバルモデルの一般化能力を効果的に向上できることが確かめられた。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
関連論文リスト
- Feature Diversification and Adaptation for Federated Domain Generalization [27.646565383214227]
実世界のアプリケーションでは、ローカルクライアントは、しばしば制限されたドメイン内で動作し、クライアント間でのドメインシフトにつながる。
フェデレーション(federated feature diversification)の概念を導入し,プライバシを保ちながら,ローカルモデルによるクライアント不変表現の学習を支援する。
我々のグローバルモデルでは、目に見えないテスト領域データに対して堅牢な性能を示す。
論文 参考訳(メタデータ) (2024-07-11T07:45:10Z) - FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization [19.0284321951354]
ドメイン一般化技術は、トレーニング中に新しいデータ分布をシミュレートすることで、モデルロバスト性を高めることを目的としている。
本稿では、拡散モデルを用いて新しい擬似ドメインを合成するFDS、フィードバック誘導ドメイン合成法を提案する。
本手法は, 領域一般化性能のベンチマークを, 様々な課題のあるデータセットに分けて設定することを示す。
論文 参考訳(メタデータ) (2024-07-04T02:45:29Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT)は、分散化されたローカルクライアントから収集されたデータが、グローバルに普及しているロングテール分布を示すパラダイムである。
本稿では、Fed-LT(FedLoGe)におけるFederated Local and Generic Model Training(FedLoGe)というアプローチを紹介し、ローカルモデルとジェネリックモデルの両方のパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-01-17T05:04:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
人物再識別(Re-ID)は、監督されたシナリオにおいて大きな成功を収めた。
モデルがソースドメインに過度に適合するため、教師付きモデルを任意の未確認領域に直接転送することは困難である。
ドメイン・アウェア・ミックス正規化(DMN)とドメイン・ウェア・センター正規化(DCR)からなるMixNormを提案する。
論文 参考訳(メタデータ) (2022-01-24T18:09:38Z) - Decentralised Person Re-Identification with Selective Knowledge
Aggregation [56.40855978874077]
既存の人物再識別(Re-ID)手法は、主に、モデル学習のためのコレクションにすべてのトレーニングデータを共有する集中型学習パラダイムに従っている。
グローバルに一般化されたモデル(サーバ)を構築するための分散(フェデレーション)Re-ID学習を導入した最近の2つの作品がある。
しかし、これらの手法は、個々のクライアントドメインのRe-IDタスクのパフォーマンスを最大化するために一般化されたモデルを適用する方法に乏しい。
我々は、モデルパーソナライゼーションと一般化のトレードオフを最適化するために、分散化されたRe-IDに対して、新しい選択的知識集約アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T18:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。