United We Stand: Decentralized Multi-Agent Planning With Attrition
- URL: http://arxiv.org/abs/2407.08254v2
- Date: Mon, 2 Sep 2024 02:35:50 GMT
- Title: United We Stand: Decentralized Multi-Agent Planning With Attrition
- Authors: Nhat Nguyen, Duong Nguyen, Gianluca Rizzo, Hung Nguyen,
- Abstract summary: Decentralized planning is a key element of cooperative multi-agent systems for information gathering tasks.
We propose Attritable MCTS, a decentralized algorithm capable of timely and efficient adaptation to changes in the set of active agents.
We show both theoretically and experimentally that A-MCTS enables efficient adaptation even under high failure rates.
- Score: 4.196094610996091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized planning is a key element of cooperative multi-agent systems for information gathering tasks. However, despite the high frequency of agent failures in realistic large deployment scenarios, current approaches perform poorly in the presence of failures, by not converging at all, and/or by making very inefficient use of resources (e.g. energy). In this work, we propose Attritable MCTS (A-MCTS), a decentralized MCTS algorithm capable of timely and efficient adaptation to changes in the set of active agents. It is based on the use of a global reward function for the estimation of each agent's local contribution, and regret matching for coordination. We evaluate its effectiveness in realistic data-harvesting problems under different scenarios. We show both theoretically and experimentally that A-MCTS enables efficient adaptation even under high failure rates. Results suggest that, in the presence of frequent failures, our solution improves substantially over the best existing approaches in terms of global utility and scalability.
Related papers
- NodeOP: Optimizing Node Management for Decentralized Networks [8.225105658045843]
We present NodeOP, a novel framework designed to optimize the management of General Node Operators in decentralized networks.
By integrating Agent-Based Modeling (ABM) with a Tendermint Byzantine Fault Tolerance (BFT)-based consensus mechanism, NodeOP addresses key challenges in task allocation, consensus formation, and system stability.
arXiv Detail & Related papers (2024-10-22T06:00:04Z) - Imitation Learning based Alternative Multi-Agent Proximal Policy
Optimization for Well-Formed Swarm-Oriented Pursuit Avoidance [15.498559530889839]
In this paper, we put forward a decentralized learning based Alternative Multi-Agent Proximal Policy Optimization (IA-MAPPO) algorithm to execute the pursuit avoidance task in well-formed swarm.
We utilize imitation learning to decentralize the formation controller, so as to reduce the communication overheads and enhance the scalability.
The simulation results validate the effectiveness of IA-MAPPO and extensive ablation experiments further show the performance comparable to a centralized solution with significant decrease in communication overheads.
arXiv Detail & Related papers (2023-11-06T06:58:16Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Best Possible Q-Learning [33.4713690991284]
Decentralized learning is a challenge in cooperative multi-agent reinforcement learning.
convergence and optimality of most decentralized algorithms are not theoretically guaranteed.
We show that best possible Q-learning achieves remarkable improvement over baselines in a variety of cooperative multi-agent tasks.
arXiv Detail & Related papers (2023-02-02T16:14:19Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
We show how thisity of agents, which could be a result of malfunction or aging of robots, can add to the uncertainty in coordination.
Our solution, DSDF which tunes the discounted factor for the agents according to uncertainty and use the values to update the utility networks of individual agents.
arXiv Detail & Related papers (2021-09-14T12:02:28Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.