Benchmarking LLMs' Swarm intelligence
- URL: http://arxiv.org/abs/2505.04364v3
- Date: Wed, 28 May 2025 07:30:31 GMT
- Title: Benchmarking LLMs' Swarm intelligence
- Authors: Kai Ruan, Mowen Huang, Ji-Rong Wen, Hao Sun,
- Abstract summary: Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) remains largely unexplored.<n>We introduce SwarmBench, a novel benchmark designed to systematically evaluate tasks of LLMs acting as decentralized agents.<n>We propose metrics for coordination effectiveness and analyze emergent group dynamics.
- Score: 50.544186914115045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict swarm-like constraints-limited local perception and communication-remains largely unexplored. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks (Pursuit, Synchronization, Foraging, Flocking, Transport) within a configurable 2D grid environment, forcing agents to rely solely on local sensory input ($k\times k$ view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Zero-shot evaluations of leading LLMs (e.g., deepseek-v3, o4-mini) reveal significant task-dependent performance variations. While some rudimentary coordination is observed, our results indicate that current LLMs significantly struggle with robust long-range planning and adaptive strategy formation under the uncertainty inherent in these decentralized scenarios. Assessing LLMs under such swarm-like constraints is crucial for understanding their utility in future decentralized intelligent systems. We release SwarmBench as an open, extensible toolkit-built on a customizable physical system-providing environments, prompts, evaluation scripts, and comprehensive datasets. This aims to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of emergent collective behavior under severe informational decentralization. Our code repository is available at https://github.com/x66ccff/swarmbench.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - CREW-WILDFIRE: Benchmarking Agentic Multi-Agent Collaborations at Scale [4.464959191643012]
We introduce CREW-Wildfire, an open-source benchmark designed to evaluate next-generation multi-agent Agentic AI frameworks.<n> CREW-Wildfire offers procedurally generated wildfire response scenarios featuring large maps, heterogeneous agents, partial observability, dynamics, and long-horizon planning objectives.<n>We implement and evaluate several state-of-the-art LLM-based multi-agent Agentic AI frameworks, uncovering significant performance gaps.
arXiv Detail & Related papers (2025-07-07T16:33:42Z) - LLM-Powered Swarms: A New Frontier or a Conceptual Stretch? [0.0]
Recently, the term'swarm' has been extended to describe AI systems like OpenAI's Swarm.<n>This paper contrasts traditional swarm algorithms with large language models (LLMs)-driven swarms.
arXiv Detail & Related papers (2025-06-17T13:18:34Z) - EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks [24.41705039390567]
EmbodiedVSR (Embodied Visual Spatial Reasoning) is a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning.<n>Our method enables zero-shot spatial reasoning without task-specific fine-tuning.<n>Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence.
arXiv Detail & Related papers (2025-03-14T05:06:07Z) - Decentralized Low-Rank Fine-Tuning of Large Language Models [14.75695352321115]
We propose Dec-LoRA, a decentralized fine-tuning algorithm for Large Language Models (LLMs) based Low-Rank Adaptation (LoRA)<n>Through experiments on BERT and LLaMA, we demonstrate that Dec-LoRA achieves comparable performance to centralized LoRA under various conditions.<n>These findings highlight the potential of Dec-LoRA for scalable fine-tuning in decentralized environments.
arXiv Detail & Related papers (2025-01-26T01:56:25Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [38.89166693142495]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)<n>It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.<n>Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.<n>As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.<n>This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Decentralized Learning Made Easy with DecentralizePy [3.1848820580333737]
Decentralized learning (DL) has gained prominence for its potential benefits in terms of scalability, privacy, and fault tolerance.
We propose DecentralizePy, a distributed framework for decentralized ML, which allows for the emulation of large-scale learning networks in arbitrary topologies.
We demonstrate the capabilities of DecentralizePy by deploying techniques such as sparsification and secure aggregation on top of several topologies.
arXiv Detail & Related papers (2023-04-17T14:42:33Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.