論文の概要: Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing
- arxiv url: http://arxiv.org/abs/2407.08274v1
- Date: Thu, 11 Jul 2024 08:23:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:19:14.390307
- Title: Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing
- Title(参考訳): リモートセンシングによるサブフィールドレベル作物収量予測の説明可能性
- Authors: Hiba Najjar, Miro Miranda, Marlon Nuske, Ribana Roscher, Andreas Dengel,
- Abstract要約: 本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点をあてる。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
- 参考スコア(独自算出の注目度): 6.65506917941232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crop yield forecasting plays a significant role in addressing growing concerns about food security and guiding decision-making for policymakers and farmers. When deep learning is employed, understanding the learning and decision-making processes of the models, as well as their interaction with the input data, is crucial for establishing trust in the models and gaining insight into their reliability. In this study, we focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany. Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps. We employ a long short-term memory network and investigate the impact of using different temporal samplings of the satellite data and the benefit of adding more relevant modalities. For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions. The modeling results show an improvement when adding more modalities or using all available instances of satellite data. The explainability results reveal distinct feature importance patterns for each crop and region. We further found that the most influential growth stages on the prediction are dependent on the temporal sampling of the input data. We demonstrated how these critical growth stages, which hold significant agronomic value, closely align with the existing literature in agronomy and crop development biology.
- Abstract(参考訳): 作物の収量予測は、食料安全保障に対する懸念の高まりと政策立案者や農家の意思決定を導く上で重要な役割を担っている。
ディープラーニングを採用する場合、モデルの学習と意思決定プロセス、および入力データとの相互作用を理解することは、モデルの信頼性を確立し、信頼性について洞察を得ることに不可欠である。
本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点を当てた。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
我々は、長期記憶ネットワークを用いて、衛星データの異なる時間的サンプリングと、より関連性の高いモダリティの追加による影響を調査する。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
モデリング結果は、より多くのモダリティを追加したり、利用可能なすべての衛星データのインスタンスを使用したりすることで改善される。
その結果, 作物や地域ごとに特徴的重要パターンが明らかとなった。
さらに, 予測における最も影響力のある成長段階は, 入力データの時間的サンプリングに依存することがわかった。
農学・作物開発におけるこれらの重要な成長段階が,既存の農学・作物開発生物学の文献とどのように密接に一致しているかを実証した。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - A Novel Fusion of Optical and Radar Satellite Data for Crop Phenology Estimation using Machine Learning and Cloud Computing [0.0]
大地観測データユビキティの時代には、リモートセンシングデータに基づいて作物の表現学を正確に予測する試みが試みられている。
そこで我々は,新しい枠組みを用いて,ドイツ全土の8大作物と13の表現学的発達を30mスケールで推定した。
論文 参考訳(メタデータ) (2024-08-16T13:44:35Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
地理空間植生予測タスクのためのVegeDiffを提案する。
VegeDiffは、植物の変化過程の不確かさを確率的に捉えるために拡散モデルを使用した最初の企業である。
植生の変化の不確かさを捉え、関連する変数の複雑な影響をモデル化することで、VegeDiffは既存の決定論的手法より優れている。
論文 参考訳(メタデータ) (2024-07-17T14:15:52Z) - Naïve Bayes and Random Forest for Crop Yield Prediction [0.0]
本研究は、1997年から2020年までのインドにおける作物収量予測を、様々な作物や重要な環境要因に着目して分析した。
これは、線形回帰、決定木、KNN、ナイーブベイズ、K平均クラスタリング、ランダムフォレストといった先進的な機械学習技術を活用することで、農業の収量を予測することを目的としている。
論文 参考訳(メタデータ) (2024-04-23T16:55:45Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
不正確な肥料の用途の決定は、コストのかかる結果をもたらし、食糧生産を妨げ、環境に害を与える可能性がある。
そこで本研究では, 年間を通じて必要な肥料量を決定することにより, 栄養素の応用を予測する方法を提案する。
提案手法は, 費用対効果と環境に優しい農業を促進するため, 気象条件と土壌特性に基づく肥料量の調整を推奨する。
論文 参考訳(メタデータ) (2023-10-18T15:37:19Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Exploring Self-Attention for Crop-type Classification Explainability [15.822486263693355]
我々は、最先端のトランスフォーマーエンコーダモデルによって学習された重要な作物の曖昧さのパターンに光を当てることを目的とした、新しい説明可能性フレームワークを提案する。
また,作物特異的な現象を明らかにするための注意力向上のための感度分析手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T12:36:40Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
本稿では,XGBoost(Extreme Gradient Boosting, エクストリームグラディエントブースティング)を利得予測に利用するための,リモートセンシング画像を特徴ベース表現に処理するためのパイプラインを提案する。
米国におけるダイズ収量予測の比較評価は,Deep Learningに基づく最先端の収量予測システムと比較して有望な予測精度を示している。
論文 参考訳(メタデータ) (2022-08-26T12:48:18Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
持続可能な開発成果を理解するために衛星画像を用いた成長する文献を合成する。
我々は、重要な人間関係の結果と、衛星画像の量の増大と解像度について、地上データの質を定量化する。
不足およびノイズの多いトレーニングデータの観点から、モデル構築に対する最近の機械学習アプローチをレビューする。
論文 参考訳(メタデータ) (2020-09-23T05:20:00Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。