Predicting Heart Failure with Attention Learning Techniques Utilizing Cardiovascular Data
- URL: http://arxiv.org/abs/2407.08289v1
- Date: Thu, 11 Jul 2024 08:33:42 GMT
- Title: Predicting Heart Failure with Attention Learning Techniques Utilizing Cardiovascular Data
- Authors: Ershadul Haque, Manoranjan Paul, Faranak Tohidi,
- Abstract summary: In cardiovascular diseases, heart failure is one of the main causes of death and also long-term suffering in patients worldwide.
In this work, an attention learning-based heart failure prediction approach is proposed on EHR(electronic health record) cardiovascular data such as ejection fraction and serum creatinine.
The proposed attention learning-based approach performs very efficiently in predicting heart failure compared to the existing state-of-the-art such as LSTM approach.
- Score: 7.476028372444458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) encompass a group of disorders affecting the heart and blood vessels, including conditions such as coronary artery disease, heart failure, stroke, and hypertension. In cardiovascular diseases, heart failure is one of the main causes of death and also long-term suffering in patients worldwide. Prediction is one of the risk factors that is highly valuable for treatment and intervention to minimize heart failure. In this work, an attention learning-based heart failure prediction approach is proposed on EHR(electronic health record) cardiovascular data such as ejection fraction and serum creatinine. Moreover, different optimizers with various learning rate approaches are applied to fine-tune the proposed approach. Serum creatinine and ejection fraction are the two most important features to predict the patient's heart failure. The computational result shows that the RMSProp optimizer with 0.001 learning rate has a better prediction based on serum creatinine. On the other hand, the combination of SGD optimizer with 0.01 learning rate exhibits optimum performance based on ejection fraction features. Overall, the proposed attention learning-based approach performs very efficiently in predicting heart failure compared to the existing state-of-the-art such as LSTM approach.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Ensemble Framework for Cardiovascular Disease Prediction [0.0]
Heart disease is the major cause of non-communicable and silent death worldwide.
We have proposed a framework with a stacked ensemble using several machine learning algorithms including ExtraTrees, Random Forest, XGBoost, and so on.
Our proposed framework attained an accuracy of 92.34% which is higher than the existing literature.
arXiv Detail & Related papers (2023-06-16T17:37:43Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Improved Cardiac Arrhythmia Prediction Based on Heart Rate Variability
Analysis [0.0]
Ventricular tachycardia, ventricular fibrillation, and paroxysmal atrial fibrillation are the most commonly-occurring and dangerous arrhythmias.
This thesis proposes novel arrhythmia detection and prediction methods to differentiate cardiac arrhythmias from non-life-threatening cardiac events.
arXiv Detail & Related papers (2022-06-07T12:14:05Z) - AI-enabled Assessment of Cardiac Systolic and Diastolic Function from
Echocardiography [1.0082848901582044]
Left ventricular (LV) function is an important factor in terms of patient management, outcome, and long-term survival of patients with heart disease.
Recently published clinical guidelines for heart failure recognise that over reliance on only one measure of cardiac function is suboptimal.
Recent advances in AI-based echocardiography analysis have shown excellent results on automated estimation of LV volumes and LV ejection fraction.
arXiv Detail & Related papers (2022-03-21T10:59:48Z) - Predicting post-operative right ventricular failure using video-based
deep learning [9.884447146588542]
We develop a video AI system trained to predict post-operative right ventricular failure (RV failure) using the full density of information from pre-operative echocardiography scans.
We achieve an temporal acuity of 0.729, specificity of 52% at 80% sensitivity and sensitivity at 80% specificity. Furthermore, we show that our ML system significantly outperforms a team of human experts tasked with predicting RV failure on independent clinical evaluation.
arXiv Detail & Related papers (2021-02-28T00:58:53Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.