論文の概要: Leveraging GPT for the Generation of Multi-Platform Social Media Datasets for Research
- arxiv url: http://arxiv.org/abs/2407.08323v1
- Date: Thu, 11 Jul 2024 09:12:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:09:27.578969
- Title: Leveraging GPT for the Generation of Multi-Platform Social Media Datasets for Research
- Title(参考訳): 研究用マルチプラットフォームソーシャルメディアデータセット作成のためのGPTの活用
- Authors: Henry Tari, Danial Khan, Justus Rutten, Darian Othman, Rishabh Kaushal, Thales Bertaglia, Adriana Iamnitchi,
- Abstract要約: ソーシャルメディアデータセットは、偽情報、影響操作、ソーシャルセンシング、ヘイトスピーチ検出、サイバーいじめ、その他の重要なトピックの研究に不可欠である。
これらのデータセットへのアクセスは、コストとプラットフォーム規制のために制限されることが多い。
本稿では,複数のプラットフォームにまたがって,語彙的および意味論的に関連するソーシャルメディアデータセットを作成するための,大規模言語モデルの可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media datasets are essential for research on disinformation, influence operations, social sensing, hate speech detection, cyberbullying, and other significant topics. However, access to these datasets is often restricted due to costs and platform regulations. As such, acquiring datasets that span multiple platforms which are crucial for a comprehensive understanding of the digital ecosystem is particularly challenging. This paper explores the potential of large language models to create lexically and semantically relevant social media datasets across multiple platforms, aiming to match the quality of real datasets. We employ ChatGPT to generate synthetic data from two real datasets, each consisting of posts from three different social media platforms. We assess the lexical and semantic properties of the synthetic data and compare them with those of the real data. Our empirical findings suggest that using large language models to generate synthetic multi-platform social media data is promising. However, further enhancements are necessary to improve the fidelity of the outputs.
- Abstract(参考訳): ソーシャルメディアデータセットは、偽情報、影響操作、ソーシャルセンシング、ヘイトスピーチ検出、サイバーいじめ、その他の重要なトピックの研究に不可欠である。
しかしながら、これらのデータセットへのアクセスは、コストやプラットフォーム規制のために制限されることが多い。
そのため、デジタルエコシステムの包括的な理解に不可欠である複数のプラットフォームにまたがるデータセットを取得することは特に困難である。
本稿では,複数のプラットフォームにまたがって語彙的・意味論的に関連するソーシャルメディアデータセットを作成するための,大規模言語モデルの可能性について検討する。
私たちはChatGPTを使用して、2つの実際のデータセットから合成データを生成し、それぞれが3つのソーシャルメディアプラットフォームからの投稿で構成されています。
合成データの語彙的・意味的特性を評価し,実データと比較する。
実験結果から,大規模言語モデルを用いて多プラットフォームソーシャルメディアデータを生成することは有望であることが示唆された。
しかし、出力の忠実性を改善するためにはさらなる強化が必要である。
関連論文リスト
- Enhancing Data Quality through Simple De-duplication: Navigating Responsible Computational Social Science Research [31.993279516471283]
我々は,計算社会科学のNLPで広く使われている20のデータセットについて,詳細な調査を行う。
分析の結果、ソーシャルメディアのデータセットは様々なレベルのデータ重複を示すことが明らかとなった。
以上の結果から,データ重複が現状の最先端性能の主張に影響を及ぼすことが示唆された。
論文 参考訳(メタデータ) (2024-10-04T15:58:15Z) - Towards Realistic Synthetic User-Generated Content: A Scaffolding Approach to Generating Online Discussions [17.96479268328824]
ユーザ生成コンテンツの現実的で大規模な合成データセット作成の実現可能性について検討する。
本稿では,議論スレッドのコンパクトな表現のアイデアに基づく多段階生成プロセスを提案する。
論文 参考訳(メタデータ) (2024-08-15T18:43:50Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
私たちは、包括的な社会AI分類と480のNLPデータセットからなるデータライブラリで構成される、ソーシャルAIデータインフラストラクチャを構築しています。
インフラストラクチャにより、既存のデータセットの取り組みを分析し、異なるソーシャルインテリジェンスの観点から言語モデルのパフォーマンスを評価することができます。
多面的なデータセットの必要性、言語と文化の多様性の向上、より長期にわたる社会的状況、そして将来のソーシャルインテリジェンスデータ活動におけるよりインタラクティブなデータの必要性が示されている。
論文 参考訳(メタデータ) (2024-02-28T00:22:42Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
この研究は、OpenAIの強力な言語モデルであるChatGPTを活用して、特にテレマティクス分野における合成データセットの構築と利用に力を入れている。
このデータ作成プロセスを説明するために、合成テレマティクスデータセットの生成に焦点を当てたハンズオンケーススタディが実施されている。
論文 参考訳(メタデータ) (2023-06-23T15:15:13Z) - Augmented Datasheets for Speech Datasets and Ethical Decision-Making [2.7106766103546236]
音声データセットは音声言語技術(SLT)の訓練に不可欠である
基礎となるトレーニングデータの多様性の欠如は、公平で堅牢なSLT製品を構築する上で、深刻な制限につながる可能性がある。
このようなデータ収集の倫理に関して、基礎となるトレーニングデータに対する監視の欠如がしばしばある。
論文 参考訳(メタデータ) (2023-05-08T12:49:04Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。