SLRL: Structured Latent Representation Learning for Multi-view Clustering
- URL: http://arxiv.org/abs/2407.08340v1
- Date: Thu, 11 Jul 2024 09:43:57 GMT
- Title: SLRL: Structured Latent Representation Learning for Multi-view Clustering
- Authors: Zhangci Xiong, Meng Cao,
- Abstract summary: Multi-View Clustering (MVC) aims to exploit the inherent consistency and complementarity among different views to improve clustering outcomes.
Despite extensive research in MVC, most existing methods focus predominantly on harnessing complementary information across views to enhance clustering effectiveness.
We introduce a novel framework, termed Structured Latent Representation Learning based Multi-View Clustering method.
- Score: 24.333292079699554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Multi-View Clustering (MVC) has attracted increasing attention for its potential to reduce the annotation burden associated with large datasets. The aim of MVC is to exploit the inherent consistency and complementarity among different views, thereby integrating information from multiple perspectives to improve clustering outcomes. Despite extensive research in MVC, most existing methods focus predominantly on harnessing complementary information across views to enhance clustering effectiveness, often neglecting the structural information among samples, which is crucial for exploring sample correlations. To address this gap, we introduce a novel framework, termed Structured Latent Representation Learning based Multi-View Clustering method (SLRL). SLRL leverages both the complementary and structural information. Initially, it learns a common latent representation for all views. Subsequently, to exploit the structural information among samples, a k-nearest neighbor graph is constructed from this common latent representation. This graph facilitates enhanced sample interaction through graph learning techniques, leading to a structured latent representation optimized for clustering. Extensive experiments demonstrate that SLRL not only competes well with existing methods but also sets new benchmarks in various multi-view datasets.
Related papers
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
Partial multi-view clustering (PVC) presents significant challenges practical research problem for data analysis in real-world applications.
Existing clustering methods struggle to handle incomplete views effectively, leading to suboptimal clustering performance.
We propose a novel dual optimization framework based on contrastive learning, which aims to maximize the consistency of latent features in incomplete multi-view data.
arXiv Detail & Related papers (2024-11-14T19:16:01Z) - Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
A novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper.
The proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views.
The Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure.
arXiv Detail & Related papers (2022-11-28T01:18:04Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Double Graphs Regularized Multi-view Subspace Clustering [15.52467509308717]
We propose a novel Double Graphs Regularized Multi-view Subspace Clustering (DGRMSC) method.
It aims to harness both global and local structural information of multi-view data in a unified framework.
arXiv Detail & Related papers (2022-09-30T00:16:42Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
We propose the agglomerative analysis to approximate the optimal consensus view.
We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly.
Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN.
arXiv Detail & Related papers (2020-05-12T05:39:10Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.