論文の概要: Ethics of Generating Synthetic MRI Vocal Tract Views from the Face
- arxiv url: http://arxiv.org/abs/2407.08403v1
- Date: Thu, 11 Jul 2024 11:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:49:33.787092
- Title: Ethics of Generating Synthetic MRI Vocal Tract Views from the Face
- Title(参考訳): 顔からの合成MRI声道ビュー生成の倫理
- Authors: Muhammad Suhaib Shahid, Gleb E. Yakubov, Andrew P. French,
- Abstract要約: 本稿では,外部-内部相関モデル(E2ICM)の倫理的意義について考察する。
E2ICMは顔の動きを使って内部構成を推測し、MRIの費用対効果を支える技術を提供する。
我々は、Pix2PixGANを用いて、外部の調音データから擬似MRIビューを生成し、このアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.3755082744150184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forming oral models capable of understanding the complete dynamics of the oral cavity is vital across research areas such as speech correction, designing foods for the aging population, and dentistry. Magnetic resonance imaging (MRI) technologies, capable of capturing oral data essential for creating such detailed representations, offer a powerful tool for illustrating articulatory dynamics. However, its real-time application is hindered by expense and expertise requirements. Ever advancing generative AI approaches present themselves as a way to address this barrier by leveraging multi-modal approaches for generating pseudo-MRI views. Nonetheless, this immediately sparks ethical concerns regarding the utilisation of a technology with the capability to produce MRIs from facial observations. This paper explores the ethical implications of external-to-internal correlation modeling (E2ICM). E2ICM utilises facial movements to infer internal configurations and provides a cost-effective supporting technology for MRI. In this preliminary work, we employ Pix2PixGAN to generate pseudo-MRI views from external articulatory data, demonstrating the feasibility of this approach. Ethical considerations concerning privacy, consent, and potential misuse, which are fundamental to our examination of this innovative methodology, are discussed as a result of this experimentation.
- Abstract(参考訳): 口腔の完全なダイナミックスを理解することができる口腔モデルの構築は、音声補正、高齢化のための食品の設計、歯科医療などの研究領域において不可欠である。
磁気共鳴イメージング(MRI)技術は、そのような詳細な表現を作成するのに不可欠な口腔データを捉えることができ、調音力学を描写するための強力なツールを提供する。
しかし、そのリアルタイムアプリケーションは、費用と専門知識の要求によって妨げられている。
生成的AIアプローチの進化は、擬似MRIビューを生成するためのマルチモーダルアプローチを活用することで、この障壁に対処する方法として自らを提示する。
それにもかかわらず、これは直ちに、顔の観察からMRIを生成する能力を備えたテクノロジーの利用に関する倫理的な懸念を引き起こします。
本稿では,外部-内部相関モデル(E2ICM)の倫理的意義について考察する。
E2ICMは、顔の動きを利用して内部構成を推測し、MRIの費用対効果を支える技術を提供する。
本稿では、Pix2PixGANを用いて、外部の調音データから擬似MRIビューを生成し、本手法の有効性を実証する。
本研究の成果として, プライバシー, 同意, 潜在的な誤用に関する倫理的考察を考察する。
関連論文リスト
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model [0.0]
本研究では,高忠実かつ現実的なMRI画像スライス作成にDeep Convolutional Generative Adversarial Networks (DCGAN) を用いることを検討した。
判別器ネットワークは、生成されたスライスと実際のスライスを区別するが、ジェネレータネットワークは、現実的なMRI画像スライスを合成することを学ぶ。
ジェネレータは、敵のトレーニングアプローチを通じて、実際のMRIデータを忠実に模倣するスライスを生成する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-11T05:06:51Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Leveraging sinusoidal representation networks to predict fMRI signals
from EEG [3.3121941932506473]
本稿では,マルチチャネル脳波から直接fMRI信号を予測できる新しいアーキテクチャを提案する。
本モデルは,脳波の周波数情報を学習するための正弦波表現ネットワーク(SIREN)を実装して実現している。
我々は,脳波-fMRI同時データセットを8被験者で評価し,脳皮質下 fMRI 信号の予測の可能性について検討した。
論文 参考訳(メタデータ) (2023-11-06T03:16:18Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
本稿では,人間の脳を模倣する人工ニューラルネットワークVISIONを提案する。
VISIONは、人間の血行動態の反応をfMRIボクセル値として、最先端の性能を超える精度で45%の精度で予測することに成功した。
論文 参考訳(メタデータ) (2023-09-26T15:38:26Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - EEG to fMRI Synthesis: Is Deep Learning a candidate? [0.913755431537592]
この研究は、脳波(EEG)ビューデータからfMRIデータを合成するために、Neural Processingから最先端の原理を使用する方法について、初めて包括的な情報を提供する。
オートエンコーダ,ジェネレータネットワーク,ペアワイズラーニングなど,最先端の合成手法の比較を行った。
結果は、fMRI脳画像マッピングに対する脳波の実現可能性を強調し、機械学習における現在の進歩の役割を指摘し、パフォーマンスをさらに向上するために、今後のコントリビューションの関連性を示す。
論文 参考訳(メタデータ) (2020-09-29T16:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。