論文の概要: Feasibility Study of a Diffusion-Based Model for Cross-Modal Generation of Knee MRI from X-ray: Integrating Radiographic Feature Information
- arxiv url: http://arxiv.org/abs/2410.06997v3
- Date: Fri, 27 Dec 2024 06:00:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 16:01:35.777474
- Title: Feasibility Study of a Diffusion-Based Model for Cross-Modal Generation of Knee MRI from X-ray: Integrating Radiographic Feature Information
- Title(参考訳): X線からの膝MRIのクロスモーダル生成のための拡散モデルの有用性:X線特徴情報の統合
- Authors: Zhe Wang, Yung Hsin Chen, Aladine Chetouani, Fabian Bauer, Yuhua Ru, Fang Chen, Liping Zhang, Rachid Jennane, Mohamed Jarraya,
- Abstract要約: 膝関節症 (KOA) は筋骨格性疾患であり, 費用対効果からX線で診断されることが多い。
磁気共鳴イメージング(MRI)は優れた軟組織可視化を提供し、貴重な補助的診断ツールとして機能する。
- 参考スコア(独自算出の注目度): 8.466319668322432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, often diagnosed using X-rays due to its cost-effectiveness. While Magnetic Resonance Imaging (MRI) provides superior soft tissue visualization and serves as a valuable supplementary diagnostic tool, its high cost and limited accessibility significantly restrict its widespread use. To explore the feasibility of bridging this imaging gap, we conducted a feasibility study leveraging a diffusion-based model that uses an X-ray image as conditional input, alongside target depth and additional patient-specific feature information, to generate corresponding MRI sequences. Our findings demonstrate that the MRI volumes generated by our approach is visually closer to real MRI scans. Moreover, increasing inference steps enhances the continuity and smoothness of the synthesized MRI sequences. Through ablation studies, we further validate that integrating supplementary patient-specific information, beyond what X-rays alone can provide, enhances the accuracy and clinical relevance of the generated MRI, which underscores the potential of leveraging external patient-specific information to improve the MRI generation. This study is available at https://zwang78.github.io/.
- Abstract(参考訳): 膝関節症 (KOA) は筋骨格性疾患であり, 費用対効果からX線で診断されることが多い。
Magnetic Resonance Imaging (MRI)は優れた軟組織可視化を提供し、貴重な補助的診断ツールとして機能するが、高いコストと限られたアクセシビリティーは、その広範囲の使用を著しく制限する。
この画像ギャップを埋めることの実現可能性を探るため,X線画像を条件入力として,対象深度と追加の患者固有の特徴情報とともに利用した拡散モデルを用いて,対応するMRIシーケンスを生成することの実現可能性について検討した。
以上の結果から,本法により得られたMRIの体積は,実際のMRI検査に近づいたことが示唆された。
さらに、推論ステップの増加は、合成したMRIシーケンスの連続性と滑らか性を高める。
アブレーション研究を通じて、X線単独で提供できるもの以外の補足的な患者固有情報の統合は、生成したMRIの精度と臨床的関連性を高め、外部の患者固有情報を活用してMRI生成を改善する可能性を強調している。
この研究はhttps://zwang78.github.io/.comで公開されている。
関連論文リスト
- Dual Attention Driven Lumbar Magnetic Resonance Image Feature Enhancement and Automatic Diagnosis of Herniation [5.762049149293296]
本稿では,革新的な自動LDH分類フレームワークを提案する。
本フレームワークは、臨床的に実行可能なLDH特徴を抽出し、標準化された診断出力を生成する。
受信機動作特性曲線(AUC-ROC)0.969の領域を達成し、LDH検出の精度は0.9486である。
論文 参考訳(メタデータ) (2025-04-28T02:55:59Z) - Feasibility study for reconstruction of knee MRI from one corresponding X-ray via CNN [7.46904353981184]
本稿では,1つの対応するX線からMRIを生成するためのディープラーニングに基づくアプローチを提案する。
提案手法では,X線画像再構成のために訓練された畳み込みオートエンコーダ(CAE)モデルの隠れ変数を,ジェネレータモデルの入力として使用し,3次元MRIを提供する。
論文 参考訳(メタデータ) (2025-03-16T21:09:17Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss [0.0]
長期のCOVIDは、持続的な症状、特に肺障害によって特徴づけられる。
XeMRIからの機能的データとCTからの構造的データを統合することは、包括的な分析と効果的な治療戦略に不可欠である。
本稿では,長期肺CTと陽子密度MRIデータとの整合性に優れた画像登録手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:19:18Z) - A Unified Framework for Synthesizing Multisequence Brain MRI via Hybrid Fusion [4.47838172826189]
我々はHF-GAN(Hybrid Fusion GAN)と呼ばれる,マルチシーケンスMR画像の合成のための新しい統合フレームワークを提案する。
本稿では,相補的情報と相補的情報との絡み合った抽出を確実にするためのハイブリッド核融合エンコーダを提案する。
共通特徴表現は、欠落したMR配列を合成するために、モダリティ注入器を介してターゲット潜在空間に変換される。
論文 参考訳(メタデータ) (2024-06-21T08:06:00Z) - X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models [6.046082223332061]
X-拡散(X-Diffusion)は磁気共鳴イメージング(MRI)データに適した断面拡散モデルである。
X-Diffusionは、1つのフルボディDXAから詳細な3DMRIボリュームを生成することができる。
注目すべきは、MRIは、腫瘍のプロファイル、脊椎曲率、脳の容積など、オリジナルのMRIの本質的な特徴を完璧に保持していることだ。
論文 参考訳(メタデータ) (2024-04-30T14:53:07Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
生成した放射場に基づく不確実性を考慮したMedNeRF(UMedNeRF)ネットワークを提案する。
我々は,CTプロジェクションレンダリングの結果を1つのX線で示し,生成した放射場に基づく他の手法との比較を行った。
論文 参考訳(メタデータ) (2023-11-10T02:47:15Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
合成MRI画像を用いたCTスキャンによるモノモーダル登録の高速化手法を提案する。
提案手法は有望な結果を示し,いくつかの最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-10-31T16:39:56Z) - Unpaired MRI Super Resolution with Contrastive Learning [33.65350200042909]
深層学習に基づく画像超解像法は、余分なコストなしでMRIの解像度を改善することを約束する。
整列性高分解能(HR)と低分解能(LR)のMRI画像ペアが欠如しているため、教師なしのアプローチはMRI画像によるSR再構成に広く採用されている。
我々は,限られたHRデータでSR性能を向上させるために,コントラスト学習を用いたMRI SRアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-24T12:13:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
コントラスト学習を用いた自己教師付き事前訓練手法を導入し,MRI画像再構成の精度を向上する。
本実験は, 各種加速度因子およびデータセットの再構成精度の向上を実証した。
論文 参考訳(メタデータ) (2023-06-01T10:29:58Z) - X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics [55.6985304397137]
膜セグメンテーション品質を向上したEMライクな画像にX線画像を変換する不確実性を考慮した3D再構成モデルを提案する。
これは、よりシンプルで、より高速で、より正確なX線ベースのコネクトロミクスパイプラインを開発する可能性を示している。
論文 参考訳(メタデータ) (2023-03-02T00:52:41Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - BMD-GAN: Bone mineral density estimation using x-ray image decomposition
into projections of bone-segmented quantitative computed tomography using
hierarchical learning [1.8762753243053634]
そこで本研究では,QCTを用いて生成的対位ネットワーク(GAN)を訓練し,X線画像を骨分節QCTの投影に分解する手法を提案する。
変形性膝関節症患者200名を対象に, 予測真理と地上真理のピアソン相関係数が0.888であった。
論文 参考訳(メタデータ) (2022-07-07T10:33:12Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。