論文の概要: Feasibility Study of a Diffusion-Based Model for Cross-Modal Generation of Knee MRI from X-ray: Integrating Radiographic Feature Information
- arxiv url: http://arxiv.org/abs/2410.06997v3
- Date: Fri, 27 Dec 2024 06:00:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:21:33.267097
- Title: Feasibility Study of a Diffusion-Based Model for Cross-Modal Generation of Knee MRI from X-ray: Integrating Radiographic Feature Information
- Title(参考訳): X線からの膝MRIのクロスモーダル生成のための拡散モデルの有用性:X線特徴情報の統合
- Authors: Zhe Wang, Yung Hsin Chen, Aladine Chetouani, Fabian Bauer, Yuhua Ru, Fang Chen, Liping Zhang, Rachid Jennane, Mohamed Jarraya,
- Abstract要約: 膝関節症 (KOA) は筋骨格性疾患であり, 費用対効果からX線で診断されることが多い。
磁気共鳴イメージング(MRI)は優れた軟組織可視化を提供し、貴重な補助的診断ツールとして機能する。
- 参考スコア(独自算出の注目度): 8.466319668322432
- License:
- Abstract: Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, often diagnosed using X-rays due to its cost-effectiveness. While Magnetic Resonance Imaging (MRI) provides superior soft tissue visualization and serves as a valuable supplementary diagnostic tool, its high cost and limited accessibility significantly restrict its widespread use. To explore the feasibility of bridging this imaging gap, we conducted a feasibility study leveraging a diffusion-based model that uses an X-ray image as conditional input, alongside target depth and additional patient-specific feature information, to generate corresponding MRI sequences. Our findings demonstrate that the MRI volumes generated by our approach is visually closer to real MRI scans. Moreover, increasing inference steps enhances the continuity and smoothness of the synthesized MRI sequences. Through ablation studies, we further validate that integrating supplementary patient-specific information, beyond what X-rays alone can provide, enhances the accuracy and clinical relevance of the generated MRI, which underscores the potential of leveraging external patient-specific information to improve the MRI generation. This study is available at https://zwang78.github.io/.
- Abstract(参考訳): 膝関節症 (KOA) は筋骨格性疾患であり, 費用対効果からX線で診断されることが多い。
Magnetic Resonance Imaging (MRI)は優れた軟組織可視化を提供し、貴重な補助的診断ツールとして機能するが、高いコストと限られたアクセシビリティーは、その広範囲の使用を著しく制限する。
この画像ギャップを埋めることの実現可能性を探るため,X線画像を条件入力として,対象深度と追加の患者固有の特徴情報とともに利用した拡散モデルを用いて,対応するMRIシーケンスを生成することの実現可能性について検討した。
以上の結果から,本法により得られたMRIの体積は,実際のMRI検査に近づいたことが示唆された。
さらに、推論ステップの増加は、合成したMRIシーケンスの連続性と滑らか性を高める。
アブレーション研究を通じて、X線単独で提供できるもの以外の補足的な患者固有情報の統合は、生成したMRIの精度と臨床的関連性を高め、外部の患者固有情報を活用してMRI生成を改善する可能性を強調している。
この研究はhttps://zwang78.github.io/.comで公開されている。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - The MRI Scanner as a Diagnostic: Image-less Active Sampling [9.964204750574469]
そこで我々は, 患者レベルにおいて, k空間のアンサンプから疾患を直接推測するために, 強化学習を通じて, 能動的サンプリング戦略を学習するMLベースのフレームワークを提案する。
我々は,Meniscus Tearをアンダーサンプル膝MRIで評価し,MLによる診断に匹敵する診断性能が得られた。
論文 参考訳(メタデータ) (2024-06-24T16:00:20Z) - A Unified Framework for Synthesizing Multisequence Brain MRI via Hybrid Fusion [4.47838172826189]
我々はHF-GAN(Hybrid Fusion GAN)と呼ばれる,マルチシーケンスMR画像の合成のための新しい統合フレームワークを提案する。
本稿では,相補的情報と相補的情報との絡み合った抽出を確実にするためのハイブリッド核融合エンコーダを提案する。
共通特徴表現は、欠落したMR配列を合成するために、モダリティ注入器を介してターゲット潜在空間に変換される。
論文 参考訳(メタデータ) (2024-06-21T08:06:00Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Unpaired MRI Super Resolution with Contrastive Learning [33.65350200042909]
深層学習に基づく画像超解像法は、余分なコストなしでMRIの解像度を改善することを約束する。
整列性高分解能(HR)と低分解能(LR)のMRI画像ペアが欠如しているため、教師なしのアプローチはMRI画像によるSR再構成に広く採用されている。
我々は,限られたHRデータでSR性能を向上させるために,コントラスト学習を用いたMRI SRアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-24T12:13:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
コントラスト学習を用いた自己教師付き事前訓練手法を導入し,MRI画像再構成の精度を向上する。
本実験は, 各種加速度因子およびデータセットの再構成精度の向上を実証した。
論文 参考訳(メタデータ) (2023-06-01T10:29:58Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
自己教師型MR画像再構成のためのデータ改質フレームワークを提案する。
まず,自己教師付き手法と教師付き手法のパフォーマンスギャップの原因を解析する。
そして、このデータバイアスを低減するために、効果的な自己教師付きトレーニングデータ精錬法を設計する。
論文 参考訳(メタデータ) (2022-11-24T06:57:16Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。