論文の概要: Beyond Instruction Following: Evaluating Rule Following of Large Language Models
- arxiv url: http://arxiv.org/abs/2407.08440v1
- Date: Thu, 11 Jul 2024 12:26:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:39:27.534923
- Title: Beyond Instruction Following: Evaluating Rule Following of Large Language Models
- Title(参考訳): 命令追従を超えて: 大規模言語モデルの規則追従を評価する
- Authors: Wangtao Sun, Chenxiang Zhang, Xueyou Zhang, Ziyang Huang, Haotian Xu, Pei Chen, Shizhu He, Jun Zhao, Kang Liu,
- Abstract要約: 大規模言語モデル(LLM)は、強力な命令追従能力を示す。
本稿では,ルールフォローの概念を明確にし,ルールフォロー能力の多様性を評価するためのベンチマークであるルールベンチをキュレートする。
- 参考スコア(独自算出の注目度): 26.18034766871963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Large Language Models (LLMs) have demonstrated strong instruction-following ability to be helpful, they are further supposed to be controlled and guided by rules in real-world scenarios to be safe, and accurate in responses. This demands the possession of rule-following capability of LLMs. However, few works have made a clear evaluation of the rule-following capability of LLMs. Previous studies that try to evaluate the rule-following capability of LLMs fail to distinguish the rule-following scenarios from the instruction-following scenarios. Therefore, this paper first makes a clarification of the concept of rule-following, and curates a comprehensive benchmark, RuleBench, to evaluate a diversified range of rule-following abilities. Our experimental results on a variety of LLMs show that they are still limited in following rules. Our further analysis provides insights into the improvements for LLMs toward a better rule-following intelligent agent. The data and code can be found at: https://anonymous.4open.science/r/llm-rule-following-B3E3/
- Abstract(参考訳): LLM(Large Language Models)は、強力な命令追従能力を示したが、現実のシナリオにおけるルールによって制御され、ガイドされ、安全で、応答の正確さが求められる。
これにより、LSMのルール追従能力の保有が要求される。
しかし、LLMの規則追従能力を明確に評価する研究はほとんどない。
LLMのルール追従能力を評価しようとする従来の研究は、ルール追従シナリオと命令追従シナリオを区別することができない。
そこで本研究ではまず,ルールフォローの概念を明確にし,包括的なベンチマークであるルールベンチをキュレートして,ルールフォロー能力の多様化範囲を評価する。
各種LLMに関する実験結果から, 以下のルールで制限されていることが明らかとなった。
我々のさらなる分析は、より優れたルールに従うインテリジェントエージェントに向けたLCMの改善に関する洞察を提供する。
https://anonymous.4open.science/r/llm-rule-following-B3E3/
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware
Classification [7.696798306913988]
フェアネス定義に適合するフェアネス規則を概説する枠組みを導入する。
本稿では,テキスト内学習のための構成と,RAGを用いてテキスト内デモを選択する手順について検討する。
異なるLCMを用いて行った実験では、GPT-4は他のモデルと比較して精度と公平性の両方において優れた結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-02-28T17:29:27Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
私たちは、人間がルールから学習することで、新しいタスクや知識を別の方法で学習できることにインスピレーションを受けています。
まず, LLMの強い文脈内能力を用いて, テキスト規則から知識を抽出する規則蒸留法を提案する。
実験の結果, LLMをルールから学習させることは, サンプルサイズと一般化能力の両方において, サンプルベース学習よりもはるかに効率的であることがわかった。
論文 参考訳(メタデータ) (2023-11-15T11:42:41Z) - Can LLMs Follow Simple Rules? [28.73820874333199]
ルール追従言語評価シナリオ(ルール追従言語評価シナリオ、RuLES)は、大規模言語モデルにおけるルール追従能力を測定するためのフレームワークである。
RuLESは14の単純なテキストシナリオで構成され、そこではモデルがユーザと対話しながら様々なルールに従うように指示される。
現在のほとんどのモデルは、単純なテストケースであっても、シナリオルールに従うのに苦労しています。
論文 参考訳(メタデータ) (2023-11-06T08:50:29Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBenchは、大規模言語モデルのベンチマークに続くきめ細かい制約のベンチマークである。
本稿では,初期命令に段階的に1つの制約を付加するマルチレベル機構を提案する。
FollowBench上での13のLLMの評価により,LLMの弱さと今後の研究への道のりを示す。
論文 参考訳(メタデータ) (2023-10-31T12:32:38Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - RuleBert: Teaching Soft Rules to Pre-trained Language Models [21.69870624809201]
そこで我々は, PLM が与えられた仮説の確率で予測を返すべき, 事実とソフトルールを前提とした分類タスクを導入する。
本研究では, PLM がタスクの正確な確率の予測方法を学習できるように改良された損失関数を提案する。
評価結果から,学習時に見つからない論理的ルールであっても,得られた微調整モデルは非常に高い性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-24T16:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。