論文の概要: PRE: A Peer Review Based Large Language Model Evaluator
- arxiv url: http://arxiv.org/abs/2401.15641v2
- Date: Mon, 3 Jun 2024 11:11:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:32:36.964408
- Title: PRE: A Peer Review Based Large Language Model Evaluator
- Title(参考訳): Pre: ピアレビューに基づく大規模言語モデル評価器
- Authors: Zhumin Chu, Qingyao Ai, Yiteng Tu, Haitao Li, Yiqun Liu,
- Abstract要約: 既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.585292530642603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.
- Abstract(参考訳): 大規模言語モデル(LLM)の印象的なパフォーマンスは、学術的、産業的コミュニティからかなりの注目を集めている。
LLMの構築とトレーニングの方法に加えて、LLMのキャパシティを効果的に評価し比較する方法も重要で難しい問題として認識されている。
既存のパラダイムは、異なるタスクにおけるLLMの性能を評価するために、人間のアノテータまたはモデルに基づく評価器のいずれかに依存している。
しかし、これらのパラダイムは、しばしば高コスト、低一般化可能性、継承バイアスに悩まされ、長期にわたってLLMの持続可能な開発を支援することができない。
学術出版プロセスで広く使われているピアレビューシステムに触発されたこれらの問題に対処するために,ピアレビュープロセスを通じてLPMを自動的に評価できる新しいフレームワークを提案する。
具体的には、特定のタスクを評価するために、まず、いくつかの強力なLCMから「レビュアー」を選択するための小さな資格試験を構築します。
次に、異なる候補のLSMによって書かれた「提出」を実際に評価するために、評価は、レビュアーのLSMを用いて、提出を評価または比較する。
評価LDMの最終的なランキングは、すべてのレビュアーが提示した結果に基づいて生成される。
我々は GPT-4 を含む 11 個の LLM を用いてテキスト要約タスクの広範な実験を行った。
その結果, 1 個の LLM を用いた評価において, 偏りの存在が示された。
また、P Preモデルでは、全てのベースラインを上回り、ピアレビューメカニズムの有効性を示す。
関連論文リスト
- Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
テキスト生成タスクにおける評価器として,Large Language Models (LLMs) の有効性を検討する。
我々は,4つの重要な能力を評価する上で,評価用LLMの習熟度を評価するための新しいフレームワークであるFBIを提案する。
論文 参考訳(メタデータ) (2024-06-19T10:59:48Z) - Language Model Council: Democratically Benchmarking Foundation Models on Highly Subjective Tasks [3.58262772907022]
言語モデル協議会(LMC: Language Model Council)では、LLMのグループが協力してテストを作成し、それに反応し、お互いの反応を評価してランキングを作成する。
感情的インテリジェンスに関する詳細なケーススタディでは、対人対立に対するオープン・エンド・レスポンスにおいて、20の最近のLCMを相互にランク付けするために配置する。
以上の結果から, LMCは, より分離性が高く, より堅牢なランキングを作成でき, ユーザスタディにより, 個々のLCM審査員よりも人的評価に整合性があることが示唆された。
論文 参考訳(メタデータ) (2024-06-12T19:05:43Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。