論文の概要: Infinite Motion: Extended Motion Generation via Long Text Instructions
- arxiv url: http://arxiv.org/abs/2407.08443v2
- Date: Fri, 12 Jul 2024 07:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 03:48:26.782732
- Title: Infinite Motion: Extended Motion Generation via Long Text Instructions
- Title(参考訳): 無限運動:長文命令による拡張運動生成
- Authors: Mengtian Li, Chengshuo Zhai, Shengxiang Yao, Zhifeng Xie, Keyu Chen, Yu-Gang Jiang,
- Abstract要約: 『無限運動』は、長文を長文から拡張運動生成に活用する新しいアプローチである。
我々のモデルの主な革新は、任意の長さのテキストを入力として受け入れることである。
テキストのタイムスタンプ設計を取り入れ、生成されたシーケンス内のローカルセグメントの正確な編集を可能にする。
- 参考スコア(独自算出の注目度): 51.61117351997808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of motion generation, the creation of long-duration, high-quality motion sequences remains a significant challenge. This paper presents our groundbreaking work on "Infinite Motion", a novel approach that leverages long text to extended motion generation, effectively bridging the gap between short and long-duration motion synthesis. Our core insight is the strategic extension and reassembly of existing high-quality text-motion datasets, which has led to the creation of a novel benchmark dataset to facilitate the training of models for extended motion sequences. A key innovation of our model is its ability to accept arbitrary lengths of text as input, enabling the generation of motion sequences tailored to specific narratives or scenarios. Furthermore, we incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences, offering unparalleled control and flexibility in motion synthesis. We further demonstrate the versatility and practical utility of "Infinite Motion" through three specific applications: natural language interactive editing, motion sequence editing within long sequences and splicing of independent motion sequences. Each application highlights the adaptability of our approach and broadens the spectrum of possibilities for research and development in motion generation. Through extensive experiments, we demonstrate the superior performance of our model in generating long sequence motions compared to existing methods.Project page: https://shuochengzhai.github.io/Infinite-motion.github.io/
- Abstract(参考訳): モーションジェネレーションの領域では、長周期で高品質なモーションシーケンスの作成は依然として重要な課題である。
本稿では,長文から長文へ拡張された動き生成に活用し,短文と長文の運動合成のギャップを効果的に埋める新しい手法である「無限運動」に関する画期的な研究について述べる。
私たちの中核となる洞察は、既存の高品質なテキストモーションデータセットの戦略的拡張と再組み立てであり、それによって、拡張されたモーションシーケンスのためのモデルのトレーニングを容易にする新しいベンチマークデータセットが作成されました。
我々のモデルの重要な革新は、任意の長さのテキストを入力として受け入れることであり、特定の物語やシナリオに合わせた動き列の生成を可能にする。
さらに、テキストのタイムスタンプ設計を取り入れ、生成したシーケンス内の局所セグメントの正確な編集を可能にし、非並列制御と動き合成の柔軟性を提供する。
さらに、自然言語インタラクティブな編集、長いシーケンス内の動作シーケンスの編集、独立した動きシーケンスのスプライシングという3つの応用を通して、「無限運動」の汎用性と実用性を実証する。
各アプリケーションは、我々のアプローチの適応性を強調し、モーションジェネレーションにおける研究と開発の可能性の範囲を広げる。
大規模な実験を通じて,既存手法と比較して長周期動作の生成におけるモデルの性能を実証する。プロジェクトページ: https://shuochengzhai.github.io/ Infinite-motion.github.io/
関連論文リスト
- DART: A Diffusion-Based Autoregressive Motion Model for Real-Time Text-Driven Motion Control [12.465927271402442]
テキスト条件付きヒューマンモーション生成は、自然言語によるユーザインタラクションを可能にする。
DARTは、リアルタイムテキスト駆動モーション制御のための拡散型自動回帰モーションプリミティブモデルである。
動作合成タスクにおいて,モデルの汎用性と優れた性能を実証し,両手法に有効なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-07T17:58:22Z) - Lagrangian Motion Fields for Long-term Motion Generation [32.548139921363756]
本稿では,ラグランジアン運動場の概念について紹介する。
各関節を短い間隔で一様速度でラグランジアン粒子として扱うことにより、我々のアプローチは運動表現を一連の「超運動」に凝縮する。
私たちのソリューションは万能で軽量で、ニューラルネットワークの前処理の必要性を排除しています。
論文 参考訳(メタデータ) (2024-09-03T01:38:06Z) - FineMoGen: Fine-Grained Spatio-Temporal Motion Generation and Editing [56.29102849106382]
FineMoGenは拡散ベースのモーション生成および編集フレームワークである。
微細な動きを合成し、ユーザの指示に時空間の合成を施す。
FineMoGenはさらに、現代の大規模言語モデルの助けを借りて、ゼロショットモーション編集機能を可能にする。
論文 参考訳(メタデータ) (2023-12-22T16:56:02Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
そこで本研究では,テキスト記述から高品質な人間の動作系列を生成する学習手法を提案する。
既存の技術は、任意の長さの動き列を生成する際に、動きの多様性と滑らかな遷移に苦しむ。
動作空間をコンパクトで表現力のあるパラメータ化位相空間に変換するネットワークエンコーダを開発する。
論文 参考訳(メタデータ) (2023-12-07T04:39:22Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuseは拡散モデルに基づくテキスト駆動モーション生成フレームワークである。
複雑なデータ分散をモデル化し、鮮やかなモーションシーケンスを生成するのに優れています。
体の部分のきめ細かい指示に反応し、時間経過したテキストプロンプトで任意の長さのモーション合成を行う。
論文 参考訳(メタデータ) (2022-08-31T17:58:54Z) - Hierarchical Style-based Networks for Motion Synthesis [150.226137503563]
本研究では,特定の目標地点を達成するために,長距離・多種多様・多様な行動を生成する自己指導手法を提案する。
提案手法は,長距離生成タスクを階層的に分解することで人間の動作をモデル化する。
大規模な骨格データから, 提案手法は長距離, 多様な, もっともらしい動きを合成できることを示す。
論文 参考訳(メタデータ) (2020-08-24T02:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。