Learning Localization of Body and Finger Animation Skeleton Joints on Three-Dimensional Models of Human Bodies
- URL: http://arxiv.org/abs/2407.08484v1
- Date: Thu, 11 Jul 2024 13:16:02 GMT
- Title: Learning Localization of Body and Finger Animation Skeleton Joints on Three-Dimensional Models of Human Bodies
- Authors: Stefan Novaković, Vladimir Risojević,
- Abstract summary: Our work proposes one such solution to the problem of positioning body and finger animation skeleton joints within 3D models of human bodies.
By comparing our method with the state-of-the-art, we show that it is possible to achieve significantly better results with a simpler architecture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary approaches to solving various problems that require analyzing three-dimensional (3D) meshes and point clouds have adopted the use of deep learning algorithms that directly process 3D data such as point coordinates, normal vectors and vertex connectivity information. Our work proposes one such solution to the problem of positioning body and finger animation skeleton joints within 3D models of human bodies. Due to scarcity of annotated real human scans, we resort to generating synthetic samples while varying their shape and pose parameters. Similarly to the state-of-the-art approach, our method computes each joint location as a convex combination of input points. Given only a list of point coordinates and normal vector estimates as input, a dynamic graph convolutional neural network is used to predict the coefficients of the convex combinations. By comparing our method with the state-of-the-art, we show that it is possible to achieve significantly better results with a simpler architecture, especially for finger joints. Since our solution requires fewer precomputed features, it also allows for shorter processing times.
Related papers
- Neural Localizer Fields for Continuous 3D Human Pose and Shape Estimation [32.30055363306321]
We propose a paradigm for seamlessly unifying different human pose and shape-related tasks and datasets.
Our formulation is centered on the ability - both at training and test time - to query any arbitrary point of the human volume.
We can naturally exploit differently annotated data sources including mesh, 2D/3D skeleton and dense pose, without having to convert between them.
arXiv Detail & Related papers (2024-07-10T10:44:18Z) - Improving 3D Pose Estimation for Sign Language [38.20064386142944]
This work addresses 3D human pose reconstruction in single images.
We present a method that combines Forward Kinematics (FK) with neural networks to ensure a fast and valid prediction of 3D pose.
arXiv Detail & Related papers (2023-08-18T13:05:10Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
We propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks.
Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model.
arXiv Detail & Related papers (2022-12-29T22:22:49Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
We decompose the task into two stages, i.e. person localization and pose estimation.
And we propose three task-specific graph neural networks for effective message passing.
Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets.
arXiv Detail & Related papers (2021-09-13T11:44:07Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - 3D Human Pose Regression using Graph Convolutional Network [68.8204255655161]
We propose a graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses.
Our model's performance is close to the state-of-the-art, but with much fewer parameters.
arXiv Detail & Related papers (2021-05-21T14:41:31Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.