論文の概要: Incorporating Large Language Models into Production Systems for Enhanced Task Automation and Flexibility
- arxiv url: http://arxiv.org/abs/2407.08550v1
- Date: Thu, 11 Jul 2024 14:34:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:00:06.472621
- Title: Incorporating Large Language Models into Production Systems for Enhanced Task Automation and Flexibility
- Title(参考訳): タスク自動化とフレキシビリティ向上のための大規模言語モデルを生産システムに組み込む
- Authors: Yuchen Xia, Jize Zhang, Nasser Jazdi, Michael Weyrich,
- Abstract要約: 本稿では,大規模言語モデル(LLM)エージェントを自動生産システムに統合するための新しいアプローチを提案する。
自動化ピラミッドに基づいた階層的なフレームワーク内での運用運用の組織化。
これにより、プロダクションプロセスのオーケストレーションのためのスケーラブルでフレキシブルな基盤が実現できます。
- 参考スコア(独自算出の注目度): 2.3999111269325266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach to integrating large language model (LLM) agents into automated production systems, aimed at enhancing task automation and flexibility. We organize production operations within a hierarchical framework based on the automation pyramid. Atomic operation functionalities are modeled as microservices, which are executed through interface invocation within a dedicated digital twin system. This allows for a scalable and flexible foundation for orchestrating production processes. In this digital twin system, low-level, hardware-specific data is semantically enriched and made interpretable for LLMs for production planning and control tasks. Large language model agents are systematically prompted to interpret these production-specific data and knowledge. Upon receiving a user request or identifying a triggering event, the LLM agents generate a process plan. This plan is then decomposed into a series of atomic operations, executed as microservices within the real-world automation system. We implement this overall approach on an automated modular production facility at our laboratory, demonstrating how the LLMs can handle production planning and control tasks through a concrete case study. This results in an intuitive production facility with higher levels of task automation and flexibility. Finally, we reveal the several limitations in realizing the full potential of the large language models in autonomous systems and point out promising benefits. Demos of this series of ongoing research series can be accessed at: https://github.com/YuchenXia/GPT4IndustrialAutomation
- Abstract(参考訳): 本稿では,タスクの自動化と柔軟性の向上を目的とした,大規模言語モデル(LLM)エージェントを自動生産システムに統合するための新しいアプローチを提案する。
自動化ピラミッドに基づいた階層的なフレームワーク内での運用運用の組織化。
アトミックな操作機能はマイクロサービスとしてモデル化され、専用のデジタルツインシステム内のインターフェース呼び出しを通じて実行される。
これにより、プロダクションプロセスのオーケストレーションのためのスケーラブルでフレキシブルな基盤が実現できます。
このデジタルツインシステムでは、低レベルのハードウェア固有のデータがセマンティックに濃縮され、生産計画と制御タスクのためにLLMに解釈可能である。
大規模言語モデルエージェントは、これらの生産固有のデータと知識を体系的に解釈するよう促される。
ユーザ要求の受信やトリガーイベントの特定を行うと、LLMエージェントはプロセスプランを生成する。
この計画はその後、実際の自動化システム内でマイクロサービスとして実行される一連のアトミックオペレーションに分解される。
本研究では,LLMが実運用計画や制御タスクを具体的なケーススタディを通じてどのように処理できるかを実演する。
これにより、より高度なタスク自動化と柔軟性を備えた直感的な生産設備が実現される。
最後に、自律システムにおける大規模言語モデルの潜在能力をフルに実現するためのいくつかの制限を明らかにし、有望なメリットを指摘した。
この一連の研究シリーズのデモは、https://github.com/YuchenXia/GPT4IndustrialAutomationで見ることができる。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Control Industrial Automation System with Large Language Models [2.2369578015657954]
本稿では,大規模言語モデルと産業自動化システムを統合するためのフレームワークを提案する。
フレームワークの中核には、産業タスク用に設計されたエージェントシステム、構造化プロンプト方法、イベント駆動情報モデリング機構がある。
コントリビューションには、フォーマルなシステム設計、概念実証実装、タスク固有のデータセットを生成する方法が含まれる。
論文 参考訳(メタデータ) (2024-09-26T16:19:37Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks [37.48197934228379]
コンピュータビジョンのためのエンドツーエンドモデルプロダクションワークフロー全体を自動化するAutoMLシステムはありません。
本稿では、ユーザの自然言語要求を理解し、プロダクション対応モデルを生成するワークフロー全体を実行することを含む、新しいリクエスト・ツー・モデルタスクを提案する。
これにより、専門家でない個人が、ユーザフレンドリーな言語インターフェースを通じて、タスク固有のモデルを簡単に構築できるようになる。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoActはQAのための自動エージェント学習フレームワークである。
大規模アノテートデータやクローズドソースモデルからの合成計画軌道は依存していない。
論文 参考訳(メタデータ) (2024-01-10T16:57:24Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
この研究は、MLOps、そのメリット、困難、進化、および重要な基盤技術に関する詳細なレビューを提示する。
MLOpsワークフローは、モデルとデータ探索とデプロイメントの両方に必要なさまざまなツールとともに、詳細に説明されている。
この記事では、さまざまな成熟度の高い自動パイプラインを使用して、MLプロジェクトのエンドツーエンド生産にも光を当てます。
論文 参考訳(メタデータ) (2023-05-27T20:44:14Z) - Towards autonomous system: flexible modular production system enhanced
with large language model agents [0.0]
本稿では,大規模言語モデル(LLM),デジタルツイン,産業自動化システムを組み合わせた新しいフレームワークを提案する。
実装済みのプロトタイプが未定義のタスクをどのように処理し、運用プロセスを計画し、操作を実行するかを示します。
論文 参考訳(メタデータ) (2023-04-28T09:42:18Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。