論文の概要: Beyond Formal Semantics for Capabilities and Skills: Model Context Protocol in Manufacturing
- arxiv url: http://arxiv.org/abs/2506.11180v1
- Date: Thu, 12 Jun 2025 13:02:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.538246
- Title: Beyond Formal Semantics for Capabilities and Skills: Model Context Protocol in Manufacturing
- Title(参考訳): 機能とスキルのための形式的セマンティクスを超えて:製造におけるモデルコンテキストプロトコル
- Authors: Luis Miguel Vieira da Silva, Aljosha Köcher, Felix Gehlhoff,
- Abstract要約: 最近導入されたモデルコンテキストプロトコル(MCP)に基づく代替手法を提案する。
MCPは、LLMベースのエージェントによって直接消費可能な標準化されたインタフェースを通じて機能を公開できる。
- 参考スコア(独自算出の注目度): 0.12289361708127876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explicit modeling of capabilities and skills -- whether based on ontologies, Asset Administration Shells, or other technologies -- requires considerable manual effort and often results in representations that are not easily accessible to Large Language Models (LLMs). In this work-in-progress paper, we present an alternative approach based on the recently introduced Model Context Protocol (MCP). MCP allows systems to expose functionality through a standardized interface that is directly consumable by LLM-based agents. We conduct a prototypical evaluation on a laboratory-scale manufacturing system, where resource functions are made available via MCP. A general-purpose LLM is then tasked with planning and executing a multi-step process, including constraint handling and the invocation of resource functions via MCP. The results indicate that such an approach can enable flexible industrial automation without relying on explicit semantic models. This work lays the basis for further exploration of external tool integration in LLM-driven production systems.
- Abstract(参考訳): オントロジー、アセット管理シェル、その他の技術に基づいて、能力とスキルの明示的なモデリングを行うには、かなりの手作業が必要で、多くの場合、大きな言語モデル(LLM)に容易にアクセスできない表現が得られます。
本稿では,最近導入されたモデルコンテキストプロトコル(MCP)に基づく代替手法を提案する。
MCPは、LLMベースのエージェントによって直接消費可能な標準化されたインタフェースを通じて機能を公開できる。
実験室規模の製造システムにおいて,資源機能をMPPを介して利用できるようなプロトタイプ評価を行う。
汎用LLMは、制約処理や資源関数のMPP経由の呼び出しを含む、多段階プロセスの計画と実行をタスクとする。
その結果, 明示的なセマンティックモデルに頼ることなく, フレキシブルな産業自動化を実現することが可能であることが示唆された。
この研究は、LCM駆動生産システムにおける外部ツール統合のさらなる探求の基礎となる。
関連論文リスト
- Control Industrial Automation System with Large Language Model Agents [2.2369578015657954]
本稿では,大規模言語モデルと産業自動化システムを統合するためのフレームワークを提案する。
フレームワークの中核には、産業タスク用に設計されたエージェントシステム、構造化プロンプト方法、イベント駆動情報モデリング機構がある。
コントリビューションには、フォーマルなシステム設計、概念実証実装、タスク固有のデータセットを生成する方法が含まれる。
論文 参考訳(メタデータ) (2024-09-26T16:19:37Z) - Incorporating Large Language Models into Production Systems for Enhanced Task Automation and Flexibility [2.3999111269325266]
本稿では,大規模言語モデル(LLM)エージェントを自動生産システムに統合するための新しいアプローチを提案する。
自動化ピラミッドに基づいた階層的なフレームワーク内での運用運用の組織化。
これにより、プロダクションプロセスのオーケストレーションのためのスケーラブルでフレキシブルな基盤が実現できます。
論文 参考訳(メタデータ) (2024-07-11T14:34:43Z) - Process Modeling With Large Language Models [42.0652924091318]
本稿では,大規模言語モデル(LLM)のプロセスモデリングへの統合について検討する。
プロセスモデルの自動生成と反復的改善にLLMを利用するフレームワークを提案する。
予備的な結果は、プロセスモデリングタスクを合理化するフレームワークの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T11:27:47Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Towards autonomous system: flexible modular production system enhanced
with large language model agents [0.0]
本稿では,大規模言語モデル(LLM),デジタルツイン,産業自動化システムを組み合わせた新しいフレームワークを提案する。
実装済みのプロトタイプが未定義のタスクをどのように処理し、運用プロセスを計画し、操作を実行するかを示します。
論文 参考訳(メタデータ) (2023-04-28T09:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。