論文の概要: HACMan++: Spatially-Grounded Motion Primitives for Manipulation
- arxiv url: http://arxiv.org/abs/2407.08585v1
- Date: Thu, 11 Jul 2024 15:10:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:50:17.860378
- Title: HACMan++: Spatially-Grounded Motion Primitives for Manipulation
- Title(参考訳): HACMan++: 操作のための空間的に取り囲むモーションプリミティブ
- Authors: Bowen Jiang, Yilin Wu, Wenxuan Zhou, Chris Paxton, David Held,
- Abstract要約: 本稿では,HACMan++における空間的パラメータ化動作プリミティブについて紹介する。
環境中の空間的位置にプリミティブを接地することで、オブジェクトの形状を効果的に一般化し、バリエーションを表現できる。
提案手法は既存の手法,特に高レベルシーケンシャル推論とオブジェクト一般化の両方を必要とする複雑なシナリオにおいて,優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 28.411361363637006
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Although end-to-end robot learning has shown some success for robot manipulation, the learned policies are often not sufficiently robust to variations in object pose or geometry. To improve the policy generalization, we introduce spatially-grounded parameterized motion primitives in our method HACMan++. Specifically, we propose an action representation consisting of three components: what primitive type (such as grasp or push) to execute, where the primitive will be grounded (e.g. where the gripper will make contact with the world), and how the primitive motion is executed, such as parameters specifying the push direction or grasp orientation. These three components define a novel discrete-continuous action space for reinforcement learning. Our framework enables robot agents to learn to chain diverse motion primitives together and select appropriate primitive parameters to complete long-horizon manipulation tasks. By grounding the primitives on a spatial location in the environment, our method is able to effectively generalize across object shape and pose variations. Our approach significantly outperforms existing methods, particularly in complex scenarios demanding both high-level sequential reasoning and object generalization. With zero-shot sim-to-real transfer, our policy succeeds in challenging real-world manipulation tasks, with generalization to unseen objects. Videos can be found on the project website: https://sgmp-rss2024.github.io.
- Abstract(参考訳): エンドツーエンドのロボット学習は、ロボット操作においていくつかの成功を示しているが、学習されたポリシーは、オブジェクトのポーズや幾何学のバリエーションに対して十分に堅牢ではないことが多い。
政策一般化を改善するため,提案手法であるHACMan++に空間的パラメータ化動作プリミティブを導入する。
具体的には、どのプリミティブタイプ(グリップやプッシュなど)を実行するか、プリミティブが接地される場所(例えば、グリップが世界と接触する場所)、そして、プッシュ方向を指定するパラメータや方向を把握するパラメータなど、プリミティブモーションがどのように実行されるかという3つのコンポーネントからなるアクション表現を提案する。
これら3つの構成要素は、強化学習のための新しい離散連続アクション空間を定義する。
我々のフレームワークは,ロボットエージェントが多様な動作プリミティブをチェーンして学習し,長期操作タスクを完了するための適切なプリミティブパラメータを選択することを可能にする。
環境中の空間的位置にプリミティブを接地することで、オブジェクトの形状を効果的に一般化し、バリエーションを表現できる。
提案手法は既存の手法,特に高レベルシーケンシャル推論とオブジェクト一般化の両方を必要とする複雑なシナリオにおいて,優れた性能を発揮する。
ゼロショット sim-to-real 転送では、我々のポリシーは、目に見えないオブジェクトに一般化しながら、現実世界の操作タスクに挑戦することに成功します。
ビデオはプロジェクトのWebサイト(https://sgmp-rss2024.github.io)で見ることができる。
関連論文リスト
- Hand-Object Interaction Pretraining from Videos [77.92637809322231]
我々は,3次元ハンドオブジェクトインタラクショントラジェクトリから,一般的なロボット操作を学習する。
人間の手と操作された物体を3D空間で共有し、人間の動きをロボットの動きと共有する。
我々は、このポリシーを、強化学習(RL)と行動クローニング(BC)の両方で微調整することで、下流タスクへのサンプル効率の適応を可能にし、従来のアプローチと比較して堅牢性と一般化性を同時に改善できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-09-12T17:59:07Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Learning Generalizable Manipulation Policies with Object-Centric 3D
Representations [65.55352131167213]
GROOTは、オブジェクト中心と3D事前の堅牢なポリシーを学ぶための模倣学習手法である。
ビジョンベースの操作のための初期訓練条件を超えて一般化するポリシーを構築する。
GROOTのパフォーマンスは、バックグラウンドの変更、カメラの視点シフト、新しいオブジェクトインスタンスの存在に関する一般化に優れています。
論文 参考訳(メタデータ) (2023-10-22T18:51:45Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Causal Policy Gradient for Whole-Body Mobile Manipulation [39.3461626518495]
我々は、典型的なMoMaタスクのポリシーをトレーニングする新しい強化学習フレームワークであるCausal MoMaを紹介する。
異なるタスクを対象とした3種類の模擬ロボットにおけるCausal MoMaの性能評価を行った。
論文 参考訳(メタデータ) (2023-05-04T23:23:47Z) - Augmenting Reinforcement Learning with Behavior Primitives for Diverse
Manipulation Tasks [17.13584584844048]
本研究では,MAnipulation Primitive-augmented reinforcement LEarning (MAPLE)を導入した。
我々は、プリミティブを巻き込み、それらの実行を入力パラメータでインスタンス化する階層的なポリシーを開発する。
我々は、MAPLEが、シミュレーション操作タスクのスイートにおいて、ベースラインアプローチをかなりのマージンで上回ることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:44:33Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。