論文の概要: Towards Building Specialized Generalist AI with System 1 and System 2 Fusion
- arxiv url: http://arxiv.org/abs/2407.08642v1
- Date: Thu, 11 Jul 2024 16:23:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:40:31.945004
- Title: Towards Building Specialized Generalist AI with System 1 and System 2 Fusion
- Title(参考訳): システム1とシステム2融合による汎用AIの構築に向けて
- Authors: Kaiyan Zhang, Biqing Qi, Bowen Zhou,
- Abstract要約: 特殊汎用人工知能(SGAI、SGI)は、人工知能(AGI)にとって重要なマイルストーンである。
我々は,SGIを専門的スキルと一般性パフォーマンスのレベルに基づいて3つの段階に分類する。
本稿では,システム1と2の認知処理の強みを統合したSGI開発のための概念的枠組みを提案する。
- 参考スコア(独自算出の注目度): 14.098921452341338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this perspective paper, we introduce the concept of Specialized Generalist Artificial Intelligence (SGAI or simply SGI) as a crucial milestone toward Artificial General Intelligence (AGI). Compared to directly scaling general abilities, SGI is defined as AI that specializes in at least one task, surpassing human experts, while also retaining general abilities. This fusion path enables SGI to rapidly achieve high-value areas. We categorize SGI into three stages based on the level of mastery over professional skills and generality performance. Additionally, we discuss the necessity of SGI in addressing issues associated with large language models, such as their insufficient generality, specialized capabilities, uncertainty in innovation, and practical applications. Furthermore, we propose a conceptual framework for developing SGI that integrates the strengths of Systems 1 and 2 cognitive processing. This framework comprises three layers and four key components, which focus on enhancing individual abilities and facilitating collaborative evolution. We conclude by summarizing the potential challenges and suggesting future directions. We hope that the proposed SGI will provide insights into further research and applications towards achieving AGI.
- Abstract(参考訳): 本稿では,人工知能(AGI)にとって重要なマイルストーンとして,特殊汎用人工知能(SGAI,SGI)の概念を紹介する。
一般的な能力を直接スケーリングするのに対して、SGIは、人間の専門家を超越しながら、一般的な能力を保ちながら、少なくとも1つのタスクを専門とするAIとして定義される。
この融合経路により、SGIは高価値領域を迅速に達成できる。
我々は,SGIを専門的スキルと一般性パフォーマンスのレベルに基づいて3つの段階に分類する。
さらに,大言語モデルに関連する問題,例えば,不十分な汎用性,専門能力,革新の不確実性,実践的応用等に対処する上でのSGIの必要性についても論じる。
さらに,システム1と2の認知処理の強みを統合したSGI開発のための概念的枠組みを提案する。
このフレームワークは3つのレイヤと4つの重要なコンポーネントから構成されており、個々の能力を向上し、協調的な進化を促進することに重点を置いている。
潜在的な課題を要約し、今後の方向性を提案することで結論付ける。
我々は,提案されたSGIが,AGIの実現に向けたさらなる研究と応用に関する洞察を提供することを期待している。
関連論文リスト
- Towards Edge General Intelligence via Large Language Models: Opportunities and Challenges [18.98619510865057]
エッジインテリジェンス(EI)は、エッジネットワークの計算能力を活用することで、リアルタイムなローカライズされたサービスを提供する上で重要な役割を果たしている。
大規模言語モデル(LLM)の統合により、EIは次のステージへと進化する。
本調査は, LLMを取り入れたEGIを, 集中型, ハイブリッド型, 分散型という3つの概念システムに分類し, 従来のEIとEGIの区別を明らかにした。
論文 参考訳(メタデータ) (2024-10-16T07:45:31Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。
このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。
総合的な結果は、人工知能への大きな進歩を示している。
論文 参考訳(メタデータ) (2024-09-27T06:57:00Z) - How Far Are We From AGI: Are LLMs All We Need? [15.705756259264932]
AGIは、ヒューマンインテリジェンスに匹敵する効率と有効性で、多様な現実世界のタスクを実行する能力で区別されている。
本稿では、AGIに必要な機能フレームワークを概説し、内部、インターフェース、システム次元を統合する。
AIの統合によるユビキタスな影響について、具体的な洞察を得るため、複数のドメインにおけるAGIに対する既存の課題と潜在的な経路を概説する。
論文 参考訳(メタデータ) (2024-05-16T17:59:02Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
本稿では,人工知能(AGI)の重要な概念,能力,範囲,将来的な教育の可能性について概説する。
AGIは知的学習システム、教育評価、評価手順を大幅に改善することができる。
この論文は、AGIの能力が人間の感情や社会的相互作用を理解することに拡張されていることを強調している。
論文 参考訳(メタデータ) (2023-04-24T22:31:59Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。