論文の概要: CAR-MFL: Cross-Modal Augmentation by Retrieval for Multimodal Federated Learning with Missing Modalities
- arxiv url: http://arxiv.org/abs/2407.08648v1
- Date: Thu, 11 Jul 2024 16:26:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:40:31.939255
- Title: CAR-MFL: Cross-Modal Augmentation by Retrieval for Multimodal Federated Learning with Missing Modalities
- Title(参考訳): CAR-MFL:マルチモーダル・フェデレーション学習のための検索によるクロスモーダル強化
- Authors: Pranav Poudel, Prashant Shrestha, Sanskar Amgain, Yash Raj Shrestha, Prashnna Gyawali, Binod Bhattarai,
- Abstract要約: モーダルを欠くマルチモーダル・フェデレート学習のための新しい手法を提案する。
私たちの貢献は、検索による新しいクロスモーダルなデータ拡張であり、小さな公開データセットを活用しています。
本手法は,パラメータをフェデレートした方法で学習し,プライバシ保護の確保と性能向上を図る。
- 参考スコア(独自算出の注目度): 6.336606641921228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal AI has demonstrated superior performance over unimodal approaches by leveraging diverse data sources for more comprehensive analysis. However, applying this effectiveness in healthcare is challenging due to the limited availability of public datasets. Federated learning presents an exciting solution, allowing the use of extensive databases from hospitals and health centers without centralizing sensitive data, thus maintaining privacy and security. Yet, research in multimodal federated learning, particularly in scenarios with missing modalities a common issue in healthcare datasets remains scarce, highlighting a critical area for future exploration. Toward this, we propose a novel method for multimodal federated learning with missing modalities. Our contribution lies in a novel cross-modal data augmentation by retrieval, leveraging the small publicly available dataset to fill the missing modalities in the clients. Our method learns the parameters in a federated manner, ensuring privacy protection and improving performance in multiple challenging multimodal benchmarks in the medical domain, surpassing several competitive baselines. Code Available: https://github.com/bhattarailab/CAR-MFL
- Abstract(参考訳): マルチモーダルAIは、より包括的な分析のために多様なデータソースを活用することにより、一元的アプローチよりも優れたパフォーマンスを示している。
しかし、この効果を医療に適用することは、パブリックデータセットの可用性が限られているため、難しい。
統合学習(Federated Learning)は、病院や保健所から広範囲にわたるデータベースを使用することで、機密データを集中化することなく、プライバシとセキュリティを維持できる、エキサイティングなソリューションだ。
しかし、マルチモーダル・フェデレート・ラーニングの研究、特にモダリティの欠如によるシナリオでは、医療データセットに共通する問題は依然として少なく、将来の探索にとって重要な領域を浮き彫りにしている。
そこで本研究では,モダリティを欠くマルチモーダル・フェデレート学習のための新しい手法を提案する。
当社のコントリビューションは、検索による新たなクロスモーダルデータ拡張であり、小さな公開データセットを活用して、クライアントの欠落したモダリティを埋めています。
提案手法は, 医療領域における複数のマルチモーダルベンチマークにおいて, プライバシ保護の確保と性能向上を両立させ, 競争力のある基準を越えながら, パラメータをフェデレートした方法で学習する。
コード提供: https://github.com/bhattarailab/CAR-MFL
関連論文リスト
- Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
本稿では,野生におけるマルチモーダル核融合の共通課題と最近の進歩について考察する。
低品質データ上でのマルチモーダル融合で直面する4つの主な課題を同定する。
この新たな分類によって、研究者はフィールドの状態を理解し、いくつかの潜在的な方向を特定することができる。
論文 参考訳(メタデータ) (2024-04-27T07:22:28Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) は、複数の単一モード特徴抽出器を訓練し、その後の分類性能を向上させる学習フレームワークである。
FedMMは、精度とAUCメトリクスの2つのベースラインを特に上回っている。
論文 参考訳(メタデータ) (2024-02-24T16:58:42Z) - Examining Modality Incongruity in Multimodal Federated Learning for
Medical Vision and Language-based Disease Detection [7.515840210206994]
異なるクライアントにおけるモダリティの欠如の影響は、モダリティの不整合(modality incongruity)とも呼ばれるが、非常に見過ごされている。
本稿では、初めて、モダリティの不整合の影響を解析し、参加するクライアント間のデータ不均一性との関係を明らかにする。
論文 参考訳(メタデータ) (2024-02-07T22:16:53Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
本研究では,データサンプルの不均一性だけでなく,機関間のデータモダリティの固有不均一性と不均一性を両立する新しいFLアーキテクチャを提案する。
マルチモーダルFLに適した分散勾配ブレンディングと近接対応クライアント重み付け戦略を考案した。
論文 参考訳(メタデータ) (2024-01-07T23:45:01Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformerは新しいトランスフォーマーベースのモデルで、クライアントでのアンモダルデータセットのみを使用して、単一モダルトレーニングを可能にする。
我々は,マルコフ連鎖モンテカルロサンプリングを用いた局所エンコーダの不確実性を考慮したアグリゲーション法を開発した。
一般的な感情分析ベンチマークであるCMU-MOSIとCMU-MOSEIの実験は、HA-Fedformerが最先端のマルチモーダルモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2023-03-27T07:07:33Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。