論文の概要: SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
- arxiv url: http://arxiv.org/abs/2407.08655v1
- Date: Thu, 11 Jul 2024 16:39:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:30:47.773984
- Title: SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
- Title(参考訳): SPOCKMIP:最大強度投影を損失として連続性を高めるMRA内の容器の分割
- Authors: Chethan Radhakrishna, Karthikesh Varma Chintalapati, Sri Chandana Hudukula Ram Kumar, Raviteja Sutrave, Hendrik Mattern, Oliver Speck, Andreas Nürnberger, Soumick Chatterjee,
- Abstract要約: 本研究は,MIP(Maximum Intensity Projection)を付加的な損失基準として用いたセグメンテーション品質の向上に焦点をあてる。
ラベルセグメンテーションのMIPを1つの(z軸)と3次元体積の複数の知覚可能な軸に組み込むことで2つの手法を提案する。
提案手法は血管の連続性を改善したセグメンテーションを生成し,ROIの視覚的検査で明らかである。
- 参考スコア(独自算出の注目度): 0.5224038339798621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of $80.245 \pm 0.129$. Also, the method with single-axis MIP loss produces segmentations with a median Dice of $79.749 \pm 0.109$. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.
- Abstract(参考訳): 生体画像における異なる大きさの血管構造の同定は多くの神経変性疾患の診断において重要である。
しかし、そのような画像の良質なアノテーションの空間性は、容器のセグメンテーションを困難にしている。
ディープラーニングは、その高レベルな特徴表現と、そのような特徴の次元にわたる空間的連続性を学ぶことによって、異なるサイズの容器を分割する効率的な方法を提供する。
半教師付きパッチベースのアプローチは、直径1対2のボクセルの小さな容器を特定するのに有効である。
本研究は,最大強度投影〜(MIP)を付加損失基準として,特徴量の空間的相関を考慮したセグメンテーション品質の向上に焦点を当てた。
ラベルセグメンテーションのMIPを1〜(z軸)と3次元体積の複数の知覚可能な軸に組み込むことで2つの手法を提案する。
提案手法は血管の連続性を改善したセグメンテーションを生成し,ROIの視覚的検査で明らかである。
MIP損失という追加の損失項を導入して、予測された船体の不連続性を罰するパッチベースのトレーニングを改善する。
磁気共鳴血管造影(MRA)画像からなるStudioForrestデータセットから、14巻のトレーニングセットを選択する。
本手法の一般化性能は,データセット内の他の未確認ボリュームを用いて評価する。
提案手法は,MIP損失が80.245 \pm 0.129$のDiceで,より高品質なセグメンテーションを実現する。
また、単軸MIP損失の手法は、中央値のDiceが79.749 \pm 0.109$のセグメンテーションを生成する。
さらに, 予測セグメンテーションにおけるROIの視覚的比較により, MIP損失をトレーニングに取り入れた場合, 血管の連続性が大きく改善したことが明らかとなった。
関連論文リスト
- Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Segmentation method for cerebral blood vessels from MRA using hysteresis [1.6516902135723863]
我々は,磁気共鳴血管造影法により,血管の真実を生成する古典的セグメンテーション法を開発した。
この方法は、サイズ固有のヘッセンフィルタ、DL閾値、接続されたコンポーネント補正を組み合わせたものである。
GitHubで入手可能なこのメソッドは、コンテナセグメンテーションのためのDLモデルをトレーニングするために使用することができる。
論文 参考訳(メタデータ) (2023-03-09T08:34:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
多発性硬化症(Multiple Sclerosis、MS)は、中枢神経系の病変を引き起こす自己免疫性脱髄性疾患である。
今のところ、病変の分断には多要素自動バイオメディカルアプローチが多用されている。
著者らは1つのモダリティ(FLAIR画像)を用いてMS病変を正確に分類する方法を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:37:43Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。