CAD-Prompted Generative Models: A Pathway to Feasible and Novel Engineering Designs
- URL: http://arxiv.org/abs/2407.08675v2
- Date: Mon, 22 Jul 2024 06:49:45 GMT
- Title: CAD-Prompted Generative Models: A Pathway to Feasible and Novel Engineering Designs
- Authors: Leah Chong, Jude Rayan, Steven Dow, Ioanna Lykourentzou, Faez Ahmed,
- Abstract summary: This paper introduces a method that improves the design feasibility by prompting the generation with feasible CAD images.
Results demonstrate that the CAD image prompting successfully helps text-to-image models like Stable Diffusion 2.1 create visibly more feasible design images.
- Score: 4.806185947218336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image generative models have increasingly been used to assist designers during concept generation in various creative domains, such as graphic design, user interface design, and fashion design. However, their applications in engineering design remain limited due to the models' challenges in generating images of feasible designs concepts. To address this issue, this paper introduces a method that improves the design feasibility by prompting the generation with feasible CAD images. In this work, the usefulness of this method is investigated through a case study with a bike design task using an off-the-shelf text-to-image model, Stable Diffusion 2.1. A diverse set of bike designs are produced in seven different generation settings with varying CAD image prompting weights, and these designs are evaluated on their perceived feasibility and novelty. Results demonstrate that the CAD image prompting successfully helps text-to-image models like Stable Diffusion 2.1 create visibly more feasible design images. While a general tradeoff is observed between feasibility and novelty, when the prompting weight is kept low around 0.35, the design feasibility is significantly improved while its novelty remains on par with those generated by text prompts alone. The insights from this case study offer some guidelines for selecting the appropriate CAD image prompting weight for different stages of the engineering design process. When utilized effectively, our CAD image prompting method opens doors to a wider range of applications of text-to-image models in engineering design.
Related papers
- DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation [25.532400438564334]
We propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation.
Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone.
We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency.
arXiv Detail & Related papers (2024-11-25T11:36:34Z) - Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CAD is a novel framework that employs stable diffusion models tailored to automate the generation process.
We show that Text2CAD effectively generates technical drawings that are accurately translated into high-quality 3D CAD models.
arXiv Detail & Related papers (2024-11-09T15:12:06Z) - Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
arXiv Detail & Related papers (2024-06-17T16:03:17Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources.
We introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts.
Our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello.
arXiv Detail & Related papers (2024-04-23T17:58:33Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - PPI-NET: End-to-End Parametric Primitive Inference [24.31083483088741]
In engineering applications, line, circle, arc, and point are collectively referred to as primitives.
We propose an efficient and accurate end-to-end method to infer parametric primitives from hand-drawn sketch images.
arXiv Detail & Related papers (2023-08-03T03:50:49Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.