論文の概要: Real-Time Anomaly Detection and Reactive Planning with Large Language Models
- arxiv url: http://arxiv.org/abs/2407.08735v1
- Date: Thu, 11 Jul 2024 17:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:09:12.596332
- Title: Real-Time Anomaly Detection and Reactive Planning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたリアルタイム異常検出と反応計画
- Authors: Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew Foutter, Edward Schmerling, Marco Pavone,
- Abstract要約: 例えば、大規模な言語モデル(LLM)は、インターネットスケールのデータに基づいて訓練され、ゼロショット機能を持つ。
本稿では,潜在的な異常に関する判断を安全な制御フレームワークに組み込む2段階の推論フレームワークを提案する。
これにより、モニターは、四輪車や自動運転車のような動的ロボットシステムの信頼性を向上させることができる。
- 参考スコア(独自算出の注目度): 18.57162998677491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot generalization capabilities that make them a promising technology towards detecting and mitigating out-of-distribution failure modes of robotic systems. Fully realizing this promise, however, poses two challenges: (i) mitigating the considerable computational expense of these models such that they may be applied online, and (ii) incorporating their judgement regarding potential anomalies into a safe control framework. In this work, we present a two-stage reasoning framework: First is a fast binary anomaly classifier that analyzes observations in an LLM embedding space, which may then trigger a slower fallback selection stage that utilizes the reasoning capabilities of generative LLMs. These stages correspond to branch points in a model predictive control strategy that maintains the joint feasibility of continuing along various fallback plans to account for the slow reasoner's latency as soon as an anomaly is detected, thus ensuring safety. We show that our fast anomaly classifier outperforms autoregressive reasoning with state-of-the-art GPT models, even when instantiated with relatively small language models. This enables our runtime monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles, under resource and time constraints. Videos illustrating our approach in both simulation and real-world experiments are available on this project page: https://sites.google.com/view/aesop-llm.
- Abstract(参考訳): インターネット規模のデータで訓練された基礎モデル、例えば、大規模言語モデル(LLMs)には、ゼロショットの一般化機能があり、ロボットシステムのアウト・オブ・ディストリビューション障害モードの検出と緩和のための有望な技術となっている。
しかし、この約束に完全に気付くと、2つの課題が生じる。
一 オンラインで適用することができるようなこれらのモデルの相当な費用を軽減し、
二 潜在的な異常についての判断を安全管理の枠組みに組み込むこと。
本稿では, 2段階の推論フレームワークを提案する。 まず, LLM の埋め込み空間における観測を解析し, 生成 LLM の推論能力を利用するスローフォールバック選択段階を誘導する高速バイナリ異常分類器を提案する。
これらの段階はモデル予測制御戦略の分岐点に対応し、異常が検出された直後の遅い推理器の遅延を考慮し、様々なフォールバック計画に沿って継続する連立可能性を維持し、安全性を確保する。
我々の高速な異常分類器は、比較的小さな言語モデルでインスタンス化しても、最先端のGPTモデルで自己回帰推論より優れていることを示す。
これにより、リソースや時間的制約の下で、実行時の監視により、四輪車や自動運転車のような動的ロボットシステムの信頼性が向上する。
シミュレーションと実世界の実験の両方で我々のアプローチを例示するビデオは、このプロジェクトのページで見ることができる。
関連論文リスト
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
論文 参考訳(メタデータ) (2024-11-13T08:34:07Z) - When, Where, and What? A Novel Benchmark for Accident Anticipation and Localization with Large Language Models [14.090582912396467]
本研究では,複数の次元にわたる予測能力を高めるために,LLM(Large Language Models)を統合した新しいフレームワークを提案する。
複雑な運転シーンにおけるリスクの高い要素の優先順位を動的に調整する,革新的なチェーンベースアテンション機構を開発した。
DAD, CCD, A3Dデータセットの実証的検証は平均精度(AP)と平均時間到達精度(mTTA)において優れた性能を示す
論文 参考訳(メタデータ) (2024-07-23T08:29:49Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
HILADは、人間とAIの動的かつ双方向なコラボレーションを促進するために設計された、新しいフレームワークである。
ビジュアルインターフェースを通じて、HILADはドメインの専門家に、大規模な予期せぬモデルの振る舞いを検出し、解釈し、修正する権限を与えます。
論文 参考訳(メタデータ) (2024-05-06T07:44:07Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
モデル検査を用いて、ディファレンシャルドライブホイールロボットの多段階計画を作成することにより、即時危険を回避できることを示す。
簡単な生物エージェントのエゴセントリックな反応を反映した,小型で汎用的なモデル検査アルゴリズムを用いて,リアルタイムで計画を生成する。
論文 参考訳(メタデータ) (2023-11-16T11:02:29Z) - Model-Based Runtime Monitoring with Interactive Imitation Learning [30.70994322652745]
本研究は,タスク実行中のエラーを監視し,検出する能力を備えたロボットの実現を目的とする。
本稿では,デプロイメントデータからシステム異常を検出し,障害を予測するためのモデルベースランタイム監視アルゴリズムを提案する。
本手法は, シミュレーションおよび物理ハードウェアにおいて, 23%, 40%高い成功率で, システムレベルおよび単体テストの基準線を上回り, 性能を向上する。
論文 参考訳(メタデータ) (2023-10-26T16:45:44Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
本稿では,学習されたタイムドオートマトンとシステムに関する公式知識グラフを組み合わせることで,CPPSのモデルベース異常検出を改善することを目的とする。
モデルと検出された異常の両方を知識グラフに記述し、モデルと検出された異常をより容易に解釈できるようにする。
論文 参考訳(メタデータ) (2023-08-25T15:25:57Z) - Large Language Models as General Pattern Machines [64.75501424160748]
我々は,事前訓練された大規模言語モデル (LLM) が,複雑なトークンシーケンスを自動回帰的に完了することを示す。
驚いたことに、語彙からランダムにサンプリングされたトークンを用いてシーケンスが表現された場合でも、パターン完了の習熟度を部分的に保持することができる。
本研究では,ロボット工学における問題に対して,これらのゼロショット機能がどのように適用されるかを検討する。
論文 参考訳(メタデータ) (2023-07-10T17:32:13Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。