論文の概要: 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter
- arxiv url: http://arxiv.org/abs/2411.08433v1
- Date: Wed, 13 Nov 2024 08:34:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:41.160965
- Title: 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter
- Title(参考訳): セミスーパービジョンGRU-Kalmanフィルタによる3次元多対象追跡
- Authors: Xiaoxiang Wang, Jiaxin Liu, Miaojie Feng, Zhaoxing Zhang, Xin Yang,
- Abstract要約: 3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
- 参考スコア(独自算出の注目度): 6.13623925528906
- License:
- Abstract: 3D Multi-Object Tracking (MOT), a fundamental component of environmental perception, is essential for intelligent systems like autonomous driving and robotic sensing. Although Tracking-by-Detection frameworks have demonstrated excellent performance in recent years, their application in real-world scenarios faces significant challenges. Object movement in complex environments is often highly nonlinear, while existing methods typically rely on linear approximations of motion. Furthermore, system noise is frequently modeled as a Gaussian distribution, which fails to capture the true complexity of the noise dynamics. These oversimplified modeling assumptions can lead to significant reductions in tracking precision. To address this, we propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module. This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error. At the same time, to avoid abnormal supervision caused by the wrong association between annotations and trajectories, we design a semi-supervised learning strategy to accelerate the convergence speed and improve the robustness of the model. Evaluation experiment on the nuScenes and Argoverse2 datasets demonstrates that our system exhibits superior performance and significant potential compared to traditional TBD methods.
- Abstract(参考訳): 環境認識の基本的な構成要素である3D Multi-Object Tracking (MOT) は、自律運転やロボットセンシングといったインテリジェントシステムに不可欠である。
近年、トラッキング・バイ・ディテククションのフレームワークは優れたパフォーマンスを示しているが、現実のシナリオにおける彼らの応用は重大な課題に直面している。
複雑な環境での物体の動きは、しばしば非常に非線形であるが、既存の手法は通常、運動の線形近似に依存する。
さらに、システムノイズはガウス分布としてしばしばモデル化され、ノイズ力学の真の複雑さを捉えることができない。
これらの過度に単純化されたモデリング仮定は、追跡精度を著しく低下させる可能性がある。
そこで本研究では,学習可能なKalmanフィルタを移動モジュールに導入したGRUベースのMOT手法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
同時に,アノテーションと軌跡の誤った関連による異常な監視を回避するため,収束速度を加速し,モデルの堅牢性を向上させるための半教師付き学習戦略を設計する。
nuScenes と Argoverse2 データセットの評価実験により,従来の TBD 法と比較して,システムの性能と有意な可能性を実証した。
関連論文リスト
- Data-Driven Approaches for Modelling Target Behaviour [1.5495593104596401]
追跡アルゴリズムの性能は、対象の力学に関する選択されたモデル仮定に依存する。
本稿では,物体の動きを記述するために機械学習を利用する3つの異なる手法の比較研究を行う。
論文 参考訳(メタデータ) (2024-10-14T14:18:27Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - DTC: Deep Tracking Control [16.2850135844455]
本研究では,両世界の強靭性,フット配置精度,地形の一般化を両世界の利点と組み合わせたハイブリッド制御アーキテクチャを提案する。
深層ニューラルネットワークポリシは、最適化された足場を追跡することを目的として、シミュレーションでトレーニングされている。
モデルベースに比べて滑りやすい地盤や変形可能な地盤が存在する場合の強靭性を示す。
論文 参考訳(メタデータ) (2023-09-27T07:57:37Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - DRL-Based Trajectory Tracking for Motion-Related Modules in Autonomous Driving [3.006414390664518]
本稿では,自律運転システムにおける動作関連モジュールに対するディープ強化学習に基づく軌道追跡手法を提案する。
DLの表現学習能力とRLの探索特性は強靭性と精度の向上をもたらす。
論文 参考訳(メタデータ) (2023-08-30T12:24:30Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
歩行者軌跡予測(STGlow)のための二重グラフマーを用いた新しい生成フローベースフレームワークを提案する。
本手法は,動作の正確なログライクな振る舞いを最適化することにより,基礎となるデータ分布をより正確にモデル化することができる。
いくつかのベンチマークによる実験結果から,本手法は従来の最先端手法に比べて性能が向上することが示された。
論文 参考訳(メタデータ) (2022-11-21T07:29:24Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Can Deep Learning be Applied to Model-Based Multi-Object Tracking? [25.464269324261636]
マルチオブジェクトトラッキング(MOT)は、ノイズ測定を用いて未知の、時間変化のあるオブジェクトの状態をトラッキングする問題である。
ディープラーニング(DL)は、トラッキングパフォーマンスを改善するために、MOTでますます使われている。
本稿では,TransformerベースのDLトラッカーを提案し,その性能をモデルベースで評価する。
論文 参考訳(メタデータ) (2022-02-16T07:43:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。