Evolutionary Computation for the Design and Enrichment of General-Purpose Artificial Intelligence Systems: Survey and Prospects
- URL: http://arxiv.org/abs/2407.08745v1
- Date: Mon, 3 Jun 2024 15:47:17 GMT
- Title: Evolutionary Computation for the Design and Enrichment of General-Purpose Artificial Intelligence Systems: Survey and Prospects
- Authors: Javier Poyatos, Javier Del Ser, Salvador Garcia, Hisao Ishibuchi, Daniel Molina, Isaac Triguero, Bing Xue, Xin Yao, Francisco Herrera,
- Abstract summary: General-Purpose Artificial Intelligence Systems (GPAIS) poses model configuration and adaptability challenges.
Evolutionary Computation (EC) has been a useful tool for both the design and optimization of Machine Learning models.
This paper aims to analyze the role of EC in the field of GPAIS, exploring the use of EC for their design or enrichment.
- Score: 19.000676941637987
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Artificial Intelligence, there is an increasing demand for adaptive models capable of dealing with a diverse spectrum of learning tasks, surpassing the limitations of systems devised to cope with a single task. The recent emergence of General-Purpose Artificial Intelligence Systems (GPAIS) poses model configuration and adaptability challenges at far greater complexity scales than the optimal design of traditional Machine Learning models. Evolutionary Computation (EC) has been a useful tool for both the design and optimization of Machine Learning models, endowing them with the capability to configure and/or adapt themselves to the task under consideration. Therefore, their application to GPAIS is a natural choice. This paper aims to analyze the role of EC in the field of GPAIS, exploring the use of EC for their design or enrichment. We also match GPAIS properties to Machine Learning areas in which EC has had a notable contribution, highlighting recent milestones of EC for GPAIS. Furthermore, we discuss the challenges of harnessing the benefits of EC for GPAIS, presenting different strategies to both design and improve GPAIS with EC, covering tangential areas, identifying research niches, and outlining potential research directions for EC and GPAIS.
Related papers
- Teaching Requirements Engineering for AI: A Goal-Oriented Approach in Software Engineering Courses [4.273966905160028]
It is crucial to prepare software engineers with the abilities to specify high-quality requirements for AI-based systems.
This research aims to evaluate the effectiveness and applicability of Goal-Oriented Requirements Engineering (GORE) in facilitating requirements elicitation.
arXiv Detail & Related papers (2024-10-26T23:44:01Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
This report consists of a plan to conduct an empirical study to quantify the implications of the design decisions on AI-enabled applications performance.
We will implement both image-based and language-based neural networks in mobile applications to solve multiple image classification and text classification problems.
arXiv Detail & Related papers (2021-09-28T07:30:28Z) - Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems [9.099295007630484]
We present Optimal by Design (ObD), a framework for model-based requirements-driven synthesis of optimal adaptation strategies for autonomous systems.
ObD proposes a model for the high-level description of the basic elements of self-adaptive systems, namely the system, capabilities, requirements and environment.
Based on those elements, a Markov Decision Process (MDP) is constructed to compute the optimal strategy or the most rewarding system behaviour.
arXiv Detail & Related papers (2020-01-16T12:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.