Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems
- URL: http://arxiv.org/abs/2001.08525v1
- Date: Thu, 16 Jan 2020 12:49:55 GMT
- Title: Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems
- Authors: Yehia Elrakaiby and Paola Spoletini and Bashar Nuseibeh
- Abstract summary: We present Optimal by Design (ObD), a framework for model-based requirements-driven synthesis of optimal adaptation strategies for autonomous systems.
ObD proposes a model for the high-level description of the basic elements of self-adaptive systems, namely the system, capabilities, requirements and environment.
Based on those elements, a Markov Decision Process (MDP) is constructed to compute the optimal strategy or the most rewarding system behaviour.
- Score: 9.099295007630484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many software systems have become too large and complex to be managed
efficiently by human administrators, particularly when they operate in
uncertain and dynamic environments and require frequent changes.
Requirements-driven adaptation techniques have been proposed to endow systems
with the necessary means to autonomously decide ways to satisfy their
requirements. However, many current approaches rely on general-purpose
languages, models and/or frameworks to design, develop and analyze autonomous
systems. Unfortunately, these tools are not tailored towards the
characteristics of adaptation problems in autonomous systems. In this paper, we
present Optimal by Design (ObD ), a framework for model-based
requirements-driven synthesis of optimal adaptation strategies for autonomous
systems. ObD proposes a model (and a language) for the high-level description
of the basic elements of self-adaptive systems, namely the system,
capabilities, requirements and environment. Based on those elements, a Markov
Decision Process (MDP) is constructed to compute the optimal strategy or the
most rewarding system behaviour. Furthermore, this defines a reflex controller
that can ensure timely responses to changes. One novel feature of the framework
is that it benefits both from goal-oriented techniques, developed for
requirement elicitation, refinement and analysis, and synthesis capabilities
and extensive research around MDPs, their extensions and tools. Our preliminary
evaluation results demonstrate the practicality and advantages of the
framework.
Related papers
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
In this study, we present a novel approach that integrates pre-trained LLMs with a FEM module.
The FEM module evaluates each design and provides essential feedback, guiding the LLMs to continuously learn, plan, generate, and optimize designs without the need for domain-specific training.
Our results reveal that these LLM-based agents can successfully generate truss designs that comply with natural language specifications with a success rate of up to 90%, which varies according to the applied constraints.
arXiv Detail & Related papers (2024-04-26T16:41:24Z) - Reimagining Self-Adaptation in the Age of Large Language Models [0.9999629695552195]
This paper presents a vision for using Generative AI (GenAI) to enhance the effectiveness and efficiency of architectural adaptation.
Drawing parallels with human operators, we propose that Large Language Models (LLMs) can autonomously generate context-sensitive adaptation strategies.
Our findings suggest that GenAI has significant potential to improve software systems' dynamic adaptability and resilience.
arXiv Detail & Related papers (2024-04-15T15:30:12Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
We propose a novel model- and feature-based approach to development of vehicle software systems.
One of the key points of the presented approach is the inclusion of modern generative AI, specifically Large Language Models (LLMs)
The resulting pipeline is automated to a large extent, with feedback being generated at each step.
arXiv Detail & Related papers (2024-03-21T15:07:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Designing MacPherson Suspension Architectures using Bayesian
Optimization [21.295015276123962]
Testing for compliance is performed first by computer simulation using a discipline model.
Designs passing this simulation are then considered for physical prototyping.
We show that the proposed approach is general, scalable, and efficient.
arXiv Detail & Related papers (2022-06-17T21:50:25Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Partitioned Active Learning for Heterogeneous Systems [5.331649110169476]
We propose the partitioned active learning strategy established upon partitioned GP (PGP) modeling.
Global searching scheme accelerates the exploration aspect of active learning.
Local searching exploits the active learning criterion induced by the local GP model.
arXiv Detail & Related papers (2021-05-14T02:05:31Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.