論文の概要: Iteration over event space in time-to-first-spike spiking neural networks for Twitter bot classification
- arxiv url: http://arxiv.org/abs/2407.08746v1
- Date: Mon, 3 Jun 2024 17:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:48:17.418423
- Title: Iteration over event space in time-to-first-spike spiking neural networks for Twitter bot classification
- Title(参考訳): Twitterボット分類のための時系列スパイクニューラルネットワークにおけるイベント空間の反復
- Authors: Mateusz Pabian, Dominik Rzepka, Mirosław Pawlak,
- Abstract要約: 本研究では,既存のスパイクスパイクニューラルネットワーク(SNN)モデルを拡張したフレームワークを提案する。
本稿では、各ニューロンにおける複数の入力と出力のスパイクを持つモデルによるスパイク伝播と、エンドツーエンドのバックプロパゲーションのためのトレーニングルールの設計について説明する。
モデルは、イベントの時間(ツイートとリツイート)が情報の主要キャリアであるTwitterボット検出タスクでトレーニングされ、評価される。
- 参考スコア(独自算出の注目度): 2.578034989438381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a framework that extends existing time-coding time-to-first-spike spiking neural network (SNN) models to allow processing information changing over time. We explain spike propagation through a model with multiple input and output spikes at each neuron, as well as design training rules for end-to-end backpropagation. This strategy enables us to process information changing over time. The model is trained and evaluated on a Twitter bot detection task where the time of events (tweets and retweets) is the primary carrier of information. This task was chosen to evaluate how the proposed SNN deals with spike train data composed of hundreds of events occurring at timescales differing by almost five orders of magnitude. The impact of various parameters on model properties, performance and training-time stability is analyzed.
- Abstract(参考訳): 本研究では,従来の時分割スパイクスパイクニューラルネットワーク(SNN)モデルを拡張して,時間とともに情報を処理するフレームワークを提案する。
本稿では、各ニューロンにおける複数の入力と出力のスパイクを持つモデルによるスパイク伝播と、エンドツーエンドのバックプロパゲーションのためのトレーニングルールの設計について説明する。
この戦略により、時間とともに変化する情報を処理できます。
モデルは、イベントの時間(ツイートとリツイート)が情報の主要キャリアであるTwitterボット検出タスクでトレーニングされ、評価される。
このタスクは、提案されたSNNが、時間スケールで発生した数百のイベントからなるスパイクトレインデータをどのように扱うかを評価するために選択された。
各種パラメータがモデル特性,性能,訓練時間安定性に与える影響を解析した。
関連論文リスト
- Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals [3.1446633690603356]
本稿では、パドルストロークイベントを自動的に予測する能力の観点から、畳み込みニューラルネットワーク(CNN)と繰り返しニューラルネットワーク(RNN)について検討する。
以上の結果から,双方向ゲート再帰単位(BGRU)に基づくRNNがパドルストローク検出に最も適したモデルであることが判明した。
論文 参考訳(メタデータ) (2024-07-11T10:59:11Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification [6.830148185797109]
データ拡張による新しい数ショット学習フレームワークを提案する。
シークエンス・スペクトログラム・ニューラルネット(SSNN)も開発している。
本手法は,時系列分類における数ショット問題への対処法の適用性を実証する。
論文 参考訳(メタデータ) (2023-11-06T15:32:50Z) - Multivariate Time Series Classification: A Deep Learning Approach [1.0742675209112622]
本稿では時系列分類領域に適用可能な様々な手法とニューラルネットワークアーキテクチャについて検討する。
データは、酸素や音などの量を測定し、追跡するガスセンサー群から得られる。
このデータにより、特定の環境における占有などの事象を検出することができる。
論文 参考訳(メタデータ) (2023-07-05T12:50:48Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
隠れ状態の時間的発達を表すためにニューラルODEを用いるRNN-ODE-Adapと呼ばれるRNNベースのモデルを提案する。
我々は、データの変化の急激さに基づいて時間ステップを適応的に選択し、「スパイクのような」時系列に対してより効率的にモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-02T16:46:47Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Multi-Time-Scale Input Approaches for Hourly-Scale Rainfall-Runoff
Modeling based on Recurrent Neural Networks [0.0]
繰り返しニューラルネットワーク(RNN)による時系列モデリングに必要な計算時間を削減する2つの手法を提案する。
1つのアプローチは、RNNに並列に入力時系列の粗い時間分解を提供する。
その結果,提案手法のどちらも,RNNのトレーニングに要する時間を大幅に短縮できることを確認した。
論文 参考訳(メタデータ) (2021-01-30T07:51:55Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。