論文の概要: A Quantum Computing Approach for Multi-robot Coverage Path Planning
- arxiv url: http://arxiv.org/abs/2407.08767v1
- Date: Thu, 11 Jul 2024 10:11:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 03:38:34.259238
- Title: A Quantum Computing Approach for Multi-robot Coverage Path Planning
- Title(参考訳): マルチロボット被覆経路計画のための量子コンピューティング手法
- Authors: Poojith U Rao, Florian Speelman, Balwinder Sodhi, Sachin Kinge,
- Abstract要約: 本稿では,探索・救助・環境モニタリングなどのアプリケーションに不可欠な多車種被覆経路計画問題に取り組む。
本稿では,量子交換演算子Ansatzと簡単に統合できる2次元グリッドの探索手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper tackles the multi-vehicle Coverage Path Planning (CPP) problem, crucial for applications like search and rescue or environmental monitoring. Due to its NP-hard nature, finding optimal solutions becomes infeasible with larger problem sizes. This motivates the development of heuristic approaches that enhance efficiency even marginally. We propose a novel approach for exploring paths in a 2D grid, specifically designed for easy integration with the Quantum Alternating Operator Ansatz (QAOA), a powerful quantum heuristic. Our contribution includes: 1) An objective function tailored to solve the multi-vehicle CPP using QAOA. 2) Theoretical proofs guaranteeing the validity of the proposed approach. 3) Efficient construction of QAOA operators for practical implementation. 4) Resource estimation to assess the feasibility of QAOA execution. 5) Performance comparison against established algorithms like the Depth First Search. This work paves the way for leveraging quantum computing in optimizing multi-vehicle path planning, potentially leading to real-world advancements in various applications.
- Abstract(参考訳): 本稿では,探索・救助・環境モニタリングなどの応用に欠かせない,多車種被覆経路計画(CPP)問題に取り組む。
NPハードの性質のため、最適な解を見つけることは、より大きな問題のサイズで実現不可能となる。
このことは、効率を極端に向上するヒューリスティックなアプローチの発展を動機付けている。
本稿では,量子交換演算子 Ansatz (QAOA) と簡単に統合可能な2次元格子の経路探索手法を提案する。
私たちの貢献には以下のものがある。
1)QAOAを用いて多車CPPを解く目的関数について検討した。
2)提案手法の有効性を保証する理論的証明。
3)実用化のためのQAOA演算子の効率的な構築
4)QAOA実行の可能性を評価するための資源推定。
5)Depth First Searchのような既存のアルゴリズムとの比較。
この研究は、マルチサイクル経路計画の最適化における量子コンピューティングの活用の道を切り開いており、様々なアプリケーションにおける現実の進歩に繋がる可能性がある。
関連論文リスト
- Optimization of Flight Routes: Quantum Approximate Optimization Algorithm for the Tail Assignment Problem [0.0]
TAP(Tail Assignment Problem)は、航空会社の運用において重要な最適化課題である。
この研究は、量子近似最適化アルゴリズム(QAOA)をTAPに適用する。
この分析は量子ハードウェアの現在の限界を明らかにしているが、技術が進歩するにつれて潜在的な利点が示唆される。
論文 参考訳(メタデータ) (2024-12-17T10:35:26Z) - Distributed Quantum Approximate Optimization Algorithm on Integrated High-Performance Computing and Quantum Computing Systems for Large-Scale Optimization [1.7099366779394252]
量子近似最適化アルゴリズム(QAOA)は、ゲートベースの量子コンピューティングシステムに量子スピードアップを提供することで最適化問題を解決することを約束している。
本稿では,分散QAOA(DQAOA)を提案する。
我々はAL-DQAOAを用いてフォトニック構造を最適化することに成功し、ゲートベースの量子コンピューティングを用いた実世界の最適化問題を解くことは我々の戦略で実現可能であることを示唆した。
論文 参考訳(メタデータ) (2024-07-29T17:42:25Z) - Harnessing Inferior Solutions For Superior Outcomes: Obtaining Robust Solutions From Quantum Algorithms [0.0]
我々は、ロバストな最適化問題に取り組むために量子アルゴリズムを適用する。
本稿では、ロバストな最適解を得るための2つの革新的な方法を提案する。
これらはエネルギーセクター内の2つのユースケースに適用される。
論文 参考訳(メタデータ) (2024-04-25T17:32:55Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Enhancing Knapsack-based Financial Portfolio Optimization Using Quantum Approximate Optimization Algorithm [2.6603181502541986]
本稿では,量子ウォークミキサーの量子計算能力と量子近似最適化アルゴリズム(QAOA)を用いて,NPハード問題による課題に対処する手法を提案する。
p>=3の回路層を用いたポートフォリオ最適化手法の近似比が得られた。
論文 参考訳(メタデータ) (2024-02-11T08:20:26Z) - A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem [3.0567007573383678]
CVRP(Capacitated Vehicle Routing Problem)は、輸送や物流など様々な分野で発生するNP最適化問題である。
本稿では,CVRPの車両容量制約を回避できる最短経路を最小化する目的機能を備えた,CVRP用の新しいバイナリエンコーディングを提案する。
本稿では,量子交換演算子Ansatzの変種に基づく符号化の有効性について論じる。
論文 参考訳(メタデータ) (2023-08-17T05:14:43Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
絡み合いルーティングは、2つの任意のノード間のリモート絡み合い接続を確立する。
量子ネットワークにおける複数のソース・デスティネーション(SD)ペアの忠実性を保証するために、精製可能な絡み合わせルーティング設計を提案する。
論文 参考訳(メタデータ) (2021-11-15T14:07:22Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。