論文の概要: BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023
- arxiv url: http://arxiv.org/abs/2407.08855v2
- Date: Tue, 16 Jul 2024 20:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 11:56:44.654946
- Title: BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023
- Title(参考訳): BraTS-PED:2023年度国際小児脳腫瘍研究会議報告
- Authors: Anahita Fathi Kazerooni, Nastaran Khalili, Xinyang Liu, Debanjan Haldar, Zhifan Jiang, Anna Zapaishchykova, Julija Pavaine, Lubdha M. Shah, Blaise V. Jones, Nakul Sheth, Sanjay P. Prabhu, Aaron S. McAllister, Wenxin Tu, Khanak K. Nandolia, Andres F. Rodriguez, Ibraheem Salman Shaikh, Mariana Sanchez Montano, Hollie Anne Lai, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Hannah Anderson, Syed Muhammed Anwar, Alejandro Aristizabal, Sina Bagheri, Ujjwal Baid, Timothy Bergquist, Austin J. Borja, Evan Calabrese, Verena Chung, Gian-Marco Conte, James Eddy, Ivan Ezhov, Ariana M. Familiar, Keyvan Farahani, Deep Gandhi, Anurag Gottipati, Shuvanjan Haldar, Juan Eugenio Iglesias, Anastasia Janas, Elaine Elaine, Alexandros Karargyris, Hasan Kassem, Neda Khalili, Florian Kofler, Dominic LaBella, Koen Van Leemput, Hongwei B. Li, Nazanin Maleki, Zeke Meier, Bjoern Menze, Ahmed W. Moawad, Sarthak Pati, Marie Piraud, Tina Poussaint, Zachary J. Reitman, Jeffrey D. Rudie, Rachit Saluja, MIcah Sheller, Russell Takeshi Shinohara, Karthik Viswanathan, Chunhao Wang, Benedikt Wiestler, Walter F. Wiggins, Christos Davatzikos, Phillip B. Storm, Miriam Bornhorst, Roger Packer, Trent Hummel, Peter de Blank, Lindsey Hoffman, Mariam Aboian, Ali Nabavizadeh, Jeffrey B. Ware, Benjamin H. Kann, Brian Rood, Adam Resnick, Spyridon Bakas, Arastoo Vossough, Marius George Linguraru,
- Abstract要約: 小児脳腫瘍に焦点を当てた第1回BraTS-PEDs 2023チャレンジの結果を報告する。
BraTS-PEDs 2023は、磁気共鳴画像による小児脳グリオーマの体積分割アルゴリズムの評価を目的とした。
小児腫瘍分析におけるトップパフォーマンスのAIアプローチには、nnU-NetとSwin UNETR、Auto3DSeg、あるいはnnU-Netの自己組織化フレームワークによるアンサンブルが含まれていた。
- 参考スコア(独自算出の注目度): 44.64458075448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pediatric central nervous system tumors are the leading cause of cancer-related deaths in children. The five-year survival rate for high-grade glioma in children is less than 20%. The development of new treatments is dependent upon multi-institutional collaborative clinical trials requiring reproducible and accurate centralized response assessment. We present the results of the BraTS-PEDs 2023 challenge, the first Brain Tumor Segmentation (BraTS) challenge focused on pediatric brain tumors. This challenge utilized data acquired from multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. BraTS-PEDs 2023 aimed to evaluate volumetric segmentation algorithms for pediatric brain gliomas from magnetic resonance imaging using standardized quantitative performance evaluation metrics employed across the BraTS 2023 challenges. The top-performing AI approaches for pediatric tumor analysis included ensembles of nnU-Net and Swin UNETR, Auto3DSeg, or nnU-Net with a self-supervised framework. The BraTSPEDs 2023 challenge fostered collaboration between clinicians (neuro-oncologists, neuroradiologists) and AI/imaging scientists, promoting faster data sharing and the development of automated volumetric analysis techniques. These advancements could significantly benefit clinical trials and improve the care of children with brain tumors.
- Abstract(参考訳): 小児中枢神経系腫瘍は、小児のがん関連死亡の主な原因である。
小児の高次グリオーマの生存率は20%未満である。
新しい治療法の開発は、再現可能で正確な集中的反応評価を必要とする多施設共同臨床試験に依存している。
小児脳腫瘍に焦点を当てた第1回BraTS-PEDs 2023チャレンジ(BraTS-PEDs 2023 Challenge)の結果を報告する。
この課題は、小児神経腫瘍学と臨床試験に特化した複数の国際コンソーシアムから取得したデータを利用した。
BraTS-PEDs 2023は、BraTS 2023の課題にまたがる標準的な定量的パフォーマンス評価指標を用いて、磁気共鳴画像から小児脳グリオーマのボリュームセグメンテーションアルゴリズムを評価することを目的とした。
小児腫瘍分析におけるトップパフォーマンスのAIアプローチには、nnU-NetとSwin UNETR、Auto3DSeg、あるいはnnU-Netの自己組織化フレームワークによるアンサンブルが含まれていた。
BraTSPEDs 2023は、臨床医(神経腫瘍学者、神経放射線学者)とAI/画像科学者とのコラボレーションを促進し、より高速なデータ共有と自動ボリューム分析技術の開発を促進した。
これらの進歩は臨床試験に大きく貢献し、脳腫瘍の子供のケアを改善する可能性がある。
関連論文リスト
- Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
BraTS-MEN-RTの課題は、脳MRIを計画する放射線治療の最大のマルチ機関データセットを使用して、自動セグメンテーションアルゴリズムを進化させることである。
それぞれの症例には、3D後T1強調放射線治療計画MRIがネイティブな取得スペースに含まれている。
ターゲットボリュームアノテーションは、確立された放射線治療計画プロトコルに準拠している。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - The Brain Tumor Segmentation in Pediatrics (BraTS-PEDs) Challenge: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) [4.023596068202542]
CBTN--DIPGR-ASNR-MICCAI BraTS-PEDs : 小児脳腫瘍を中心に
小児の高次グリオーマの生存率は20%未満である。
論文 参考訳(メタデータ) (2024-04-23T13:15:22Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) [4.119582963064813]
中枢神経系の小児腫瘍は、小児におけるがん関連死の最も一般的な原因である。
小児の高次グリオーマの生存率は20%未満である。
BraTS-PEDs 2023チャレンジは、小児脳グリオーマのためのボリュームセグメンテーションアルゴリズムの開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-05-26T15:40:11Z) - The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023:
Intracranial Meningioma [4.435336201147607]
BraTS Meningioma 2023 チャレンジは、最先端の自動頭蓋内髄膜腫セグメンテーションモデルのためのコミュニティ標準とベンチマークを提供する。
競合相手はMRIで3つの異なる髄膜下領域を予測する自動セグメンテーションモデルを開発する。
論文 参考訳(メタデータ) (2023-05-12T17:52:36Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
肺癌は最も致命的ながんの1つであり、その効果的な診断と治療は腫瘍の正確な悪性度に依存している。
現在最も一般的なアプローチであるHuman-centered segmentationは、サーバ間変動の対象となる。
2018年のVIPカップは、42か国から競争データにアクセスするための世界的な参加から始まった。
簡単に言えば、競争中に提案されたアルゴリズムはすべて、偽陽性還元手法と組み合わせたディープラーニングモデルに基づいている。
論文 参考訳(メタデータ) (2022-01-03T03:06:38Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
本稿では,術前の mpMRI におけるグリオーマの自動認識のための,DeepSeg と nnU-Net という2つのディープラーニングフレームワークのアグリゲーションを提案する。
本手法では, 腫瘍, 腫瘍コア, 全腫瘍領域のDice類似度スコアが92.00, 87.33, 84.10, Hausdorff Distances 3.81, 8.91, 16.02を得た。
論文 参考訳(メタデータ) (2021-12-13T10:51:20Z) - Improving the Segmentation of Pediatric Low-Grade Gliomas through
Multitask Learning [0.1199955563466263]
低次グリオーマ(pLGGs)を有する小児患者のMRI(MRI)を訓練したセグメンテーションモデルを開発した。
提案モデルは,腫瘍の遺伝的変異分類器をメインネットワークに補助的タスクとして付加することにより,深層マルチタスク学習(dMTL)を利用する。
論文 参考訳(メタデータ) (2021-11-29T21:12:47Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。