論文の概要: H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task
- arxiv url: http://arxiv.org/abs/2012.15318v1
- Date: Wed, 30 Dec 2020 20:44:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 09:30:20.928750
- Title: H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task
- Title(参考訳): マルチモーダルMR画像を用いた脳腫瘍切開のためのH2NF-Net : 第2回 BraTS Challenge 2020 Segmentation Task
- Authors: Haozhe Jia, Weidong Cai, Heng Huang, Yong Xia
- Abstract要約: 当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
- 参考スコア(独自算出の注目度): 96.49879910148854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a Hybrid High-resolution and Non-local Feature
Network (H2NF-Net) to segment brain tumor in multimodal MR images. Our H2NF-Net
uses the single and cascaded HNF-Nets to segment different brain tumor
sub-regions and combines the predictions together as the final segmentation. We
trained and evaluated our model on the Multimodal Brain Tumor Segmentation
Challenge (BraTS) 2020 dataset. The results on the test set show that the
combination of the single and cascaded models achieved average Dice scores of
0.78751, 0.91290, and 0.85461, as well as Hausdorff distances ($95\%$) of
26.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor
core, respectively. Our method won the second place in the BraTS 2020 challenge
segmentation task out of nearly 80 participants.
- Abstract(参考訳): 本稿では,マルチモーダルMR画像中の脳腫瘍を分割するハイブリッド高分解能・非局所特徴ネットワーク(H2NF-Net)を提案する。
我々のH2NF-Netは、単一かつカスケードされたHNF-Netを使用して、異なる脳腫瘍のサブリージョンを分割し、予測を最終セグメンテーションとして組み合わせます。
我々は、マルチモーダル脳腫瘍分離チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
その結果,単発モデルと縦型モデルの組み合わせにより,0.78751,0.91290,0.85461のdiceスコアと26.57525,4.18426,4.97162のハウスドルフ距離がそれぞれ0.78751,0.91290,0.85461であった。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
関連論文リスト
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
この研究は、MRIとグラフニューラルネットワーク(GNN)の進歩を生かして、効率的な脳腫瘍要約モデルを導入する。
このモデルは、ボリュームMRIを領域隣接グラフ(RAG)として表現し、グラフ注意ネットワーク(GAT)を通して腫瘍の種類を特定することを学習する。
論文 参考訳(メタデータ) (2023-02-11T04:30:40Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
この記事では、BraTS 2022の継続的評価課題への私たちの貢献について説明する。
術前MRIにおけるグリオーマ境界の自動検出のための,DeepSeg,nnU-Net,DeepSCANという,複数のディープラーニングフレームワークのアンサンブルを提案する。
Diceスコアが0.9294、0.8788、0.8803、Hausdorf距離が5.23、13.54、12.05のBraTSテストデータセットで、腫瘍全体、腫瘍コア、造影腫瘍をそれぞれ評価した。
論文 参考訳(メタデータ) (2022-12-19T09:14:23Z) - HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging [86.52489226518955]
我々は,HNF-NetをHNF-Netv2に拡張する。
我々の方法は、RSNA 2021脳腫瘍AIチャレンジ賞(セグメンテーション・タスク)を受賞しました。
論文 参考訳(メタデータ) (2022-02-10T06:34:32Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
肺癌は最も致命的ながんの1つであり、その効果的な診断と治療は腫瘍の正確な悪性度に依存している。
現在最も一般的なアプローチであるHuman-centered segmentationは、サーバ間変動の対象となる。
2018年のVIPカップは、42か国から競争データにアクセスするための世界的な参加から始まった。
簡単に言えば、競争中に提案されたアルゴリズムはすべて、偽陽性還元手法と組み合わせたディープラーニングモデルに基づいている。
論文 参考訳(メタデータ) (2022-01-03T03:06:38Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
本稿では,術前の mpMRI におけるグリオーマの自動認識のための,DeepSeg と nnU-Net という2つのディープラーニングフレームワークのアグリゲーションを提案する。
本手法では, 腫瘍, 腫瘍コア, 全腫瘍領域のDice類似度スコアが92.00, 87.33, 84.10, Hausdorff Distances 3.81, 8.91, 16.02を得た。
論文 参考訳(メタデータ) (2021-12-13T10:51:20Z) - Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation [2.324913904215885]
アーキテクチャは、3つのDeep Layer Aggregationニューラルネットワークからなるカスケードで構成されており、各ステージは、機能マップと前のステージの確率を使用して応答を詳細化する。
神経画像データは、一般公開されたBrain Tumor (BraTS) 2020チャレンジデータセットの一部です。
実験では, 腫瘍, コア腫瘍, 造影腫瘍全例に対して, 0.8858, 0.8297, 0.7900, ハウスドルフ距離 5.32 mm, 22.32 mm, 20.44 mmのdiceスコアを得た。
論文 参考訳(メタデータ) (2021-01-02T17:59:30Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。