Estimating Reflectance Layer from A Single Image: Integrating
Reflectance Guidance and Shadow/Specular Aware Learning
- URL: http://arxiv.org/abs/2211.14751v3
- Date: Sat, 5 Aug 2023 17:04:36 GMT
- Title: Estimating Reflectance Layer from A Single Image: Integrating
Reflectance Guidance and Shadow/Specular Aware Learning
- Authors: Yeying Jin, Ruoteng Li, Wenhan Yang, Robby T. Tan
- Abstract summary: We propose a two-stage learning method, including reflectance guidance and a Shadow/Specular-Aware (S-Aware) network to tackle the problem.
In the first stage, an initial reflectance layer free from shadows and specularities is obtained with the constraint of novel losses.
To further enforce the reflectance layer to be independent of shadows and specularities in the second-stage refinement, we introduce an S-Aware network that distinguishes the reflectance image from the input image.
- Score: 66.36104525390316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the reflectance layer from a single image is a challenging task.
It becomes more challenging when the input image contains shadows or specular
highlights, which often render an inaccurate estimate of the reflectance layer.
Therefore, we propose a two-stage learning method, including reflectance
guidance and a Shadow/Specular-Aware (S-Aware) network to tackle the problem.
In the first stage, an initial reflectance layer free from shadows and
specularities is obtained with the constraint of novel losses that are guided
by prior-based shadow-free and specular-free images. To further enforce the
reflectance layer to be independent of shadows and specularities in the
second-stage refinement, we introduce an S-Aware network that distinguishes the
reflectance image from the input image. Our network employs a classifier to
categorize shadow/shadow-free, specular/specular-free classes, enabling the
activation features to function as attention maps that focus on shadow/specular
regions. Our quantitative and qualitative evaluations show that our method
outperforms the state-of-the-art methods in the reflectance layer estimation
that is free from shadows and specularities. Code is at:
\url{https://github.com/jinyeying/S-Aware-network}.
Related papers
- Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
arXiv Detail & Related papers (2024-07-11T20:58:38Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges.
We propose a new method called Restore to Detect (R2D), where a deep neural network is trained for restoration (shadow removal)
We show that our proposed method R2D improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.
arXiv Detail & Related papers (2021-09-20T15:09:22Z) - Unsupervised Portrait Shadow Removal via Generative Priors [37.46753287881341]
We propose the first unsupervised method for portrait shadow removal without any training data.
Our key idea is to leverage the generative facial priors embedded in the off-the-shelf pretrained StyleGAN2.
Our approach can also be extended to portrait tattoo removal and watermark removal.
arXiv Detail & Related papers (2021-08-07T15:09:36Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
We propose a novel deep learning method for shadow removal.
Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image.
We train and test our framework on the most challenging shadow removal dataset.
arXiv Detail & Related papers (2020-12-23T23:06:38Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
We propose a novel learning-based solution that combines the advantages of the aforementioned approaches and overcomes their drawbacks.
Our algorithm works by learning a deep neural network to optimize the target with joint constraints enhanced among multiple input images.
Our algorithm runs in real-time and state-of-the-art reflection removal performance on real images.
arXiv Detail & Related papers (2019-12-08T06:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.