Transforming Movie Recommendations with Advanced Machine Learning: A Study of NMF, SVD,and K-Means Clustering
- URL: http://arxiv.org/abs/2407.08916v1
- Date: Fri, 12 Jul 2024 01:26:33 GMT
- Title: Transforming Movie Recommendations with Advanced Machine Learning: A Study of NMF, SVD,and K-Means Clustering
- Authors: Yubing Yan, Camille Moreau, Zhuoyue Wang, Wenhan Fan, Chengqian Fu,
- Abstract summary: This study develops a robust movie recommendation system using various machine learning techniques.
The primary objective is to enhance user experience by providing personalized movie recommendations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study develops a robust movie recommendation system using various machine learning techniques, including Non- Negative Matrix Factorization (NMF), Truncated Singular Value Decomposition (SVD), and K-Means clustering. The primary objective is to enhance user experience by providing personalized movie recommendations. The research encompasses data preprocessing, model training, and evaluation, highlighting the efficacy of the employed methods. Results indicate that the proposed system achieves high accuracy and relevance in recommendations, making significant contributions to the field of recommendations systems.
Related papers
- MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques.
The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation.
arXiv Detail & Related papers (2024-08-08T04:31:29Z) - CF Recommender System Based on Ontology and Nonnegative Matrix Factorization (NMF) [0.0]
This work is to address the recommender system's data sparsity and accuracy problems.
The implemented approach efficiently reduces the sparsity of CF suggestions, improves their accuracy, and gives more relevant items as recommendations.
arXiv Detail & Related papers (2024-05-31T14:50:53Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems [100.54655931138444]
We propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions.
We present a robustness evaluation toolkit, Robustness Gym for RecSys, that allows us to quickly and uniformly evaluate the robustness of recommender system models.
arXiv Detail & Related papers (2022-01-12T10:32:53Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - A Comprehensive Review on Non-Neural Networks Collaborative Filtering
Recommendation Systems [1.3124513975412255]
Collaborative filtering (CF) uses the known preference of a group of users to make predictions and recommendations about the unknown preferences of other users.
First introduced in the 1990s, a wide variety of increasingly successful models have been proposed.
Due to the success of machine learning techniques in many areas, there has been a growing emphasis on the application of such algorithms in recommendation systems.
arXiv Detail & Related papers (2021-06-20T11:13:33Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - Developing a Recommendation Benchmark for MLPerf Training and Inference [16.471395965484145]
We aim to define an industry-relevant recommendation benchmark for theerferf Training andInference Suites.
The paper synthesizes the desirable modeling strategies for personalized recommendation systems.
We lay out desirable characteristics of recommendation model architectures and data sets.
arXiv Detail & Related papers (2020-03-16T17:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.