Communication-Aware Reinforcement Learning for Cooperative Adaptive Cruise Control
- URL: http://arxiv.org/abs/2407.08964v1
- Date: Fri, 12 Jul 2024 03:28:24 GMT
- Title: Communication-Aware Reinforcement Learning for Cooperative Adaptive Cruise Control
- Authors: Sicong Jiang, Seongjin Choi, Lijun Sun,
- Abstract summary: Reinforcement Learning (RL) has proven effective in optimizing complex decision-making processes in CACC.
MARL has shown remarkable potential by enabling coordinated actions among multiple CAVs.
We propose Communication-Aware Reinforcement Learning (CA-RL) to address these challenges.
- Score: 15.31488551912888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative Adaptive Cruise Control (CACC) plays a pivotal role in enhancing traffic efficiency and safety in Connected and Autonomous Vehicles (CAVs). Reinforcement Learning (RL) has proven effective in optimizing complex decision-making processes in CACC, leading to improved system performance and adaptability. Among RL approaches, Multi-Agent Reinforcement Learning (MARL) has shown remarkable potential by enabling coordinated actions among multiple CAVs through Centralized Training with Decentralized Execution (CTDE). However, MARL often faces scalability issues, particularly when CACC vehicles suddenly join or leave the platoon, resulting in performance degradation. To address these challenges, we propose Communication-Aware Reinforcement Learning (CA-RL). CA-RL includes a communication-aware module that extracts and compresses vehicle communication information through forward and backward information transmission modules. This enables efficient cyclic information propagation within the CACC traffic flow, ensuring policy consistency and mitigating the scalability problems of MARL in CACC. Experimental results demonstrate that CA-RL significantly outperforms baseline methods in various traffic scenarios, achieving superior scalability, robustness, and overall system performance while maintaining reliable performance despite changes in the number of participating vehicles.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Mitigating Partial Observability in Adaptive Traffic Signal Control with Transformers [26.1987660654434]
Reinforcement Learning (RL) has emerged as a promising approach to enhancing adaptive traffic signal control (ATSC) systems.
This paper presents the integration of Transformer-based controllers into ATSC systems to address partial observability (PO)
The results showcase the Transformer-based model's ability to capture significant information from historical observations, leading to better control policies and improved traffic flow.
arXiv Detail & Related papers (2024-09-16T19:46:15Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Attacking Deep Reinforcement Learning-Based Traffic Signal Control
Systems with Colluding Vehicles [4.2455052426413085]
This paper formulates a novel task in which a group of vehicles can cooperatively send falsified information to "cheat" DRL-based ATCS.
CollusionVeh is a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism.
The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.
arXiv Detail & Related papers (2021-11-04T13:10:33Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
We design an information-sharing-based reinforcement learning framework for connected autonomous vehicles.
We show that our approach can improve the CAV system's efficiency in terms of average velocity and comfort.
We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
arXiv Detail & Related papers (2020-03-09T19:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.