論文の概要: TS-SAM: Fine-Tuning Segment-Anything Model for Downstream Tasks
- arxiv url: http://arxiv.org/abs/2408.01835v1
- Date: Sat, 3 Aug 2024 18:08:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:11:11.451105
- Title: TS-SAM: Fine-Tuning Segment-Anything Model for Downstream Tasks
- Title(参考訳): TS-SAM:下流タスクのための微調整セグメント類似モデル
- Authors: Yang Yu, Chen Xu, Kai Wang,
- Abstract要約: 微調整されたSAMとドメイン固有のモデルの間には、依然として大きなパフォーマンスギャップがあります。
本稿では,SAM の強力な特徴をサイドネットワークトレーニングに統合し,包括的特徴融合を実現する Two-Stream SAM (TS-SAM) を提案する。
3つのタスクから得られた10の公開データセットに対する大規模な実験により、TS-SAMは、最近提案されたSAM-AdapterとSSOMよりも大幅に優れているだけでなく、SOTAドメイン固有のモデルとの競合性能も達成している。
- 参考スコア(独自算出の注目度): 10.75125721857487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapter based fine-tuning has been studied for improving the performance of SAM on downstream tasks. However, there is still a significant performance gap between fine-tuned SAMs and domain-specific models. To reduce the gap, we propose Two-Stream SAM (TS-SAM). On the one hand, inspired by the side network in Parameter-Efficient Fine-Tuning (PEFT), we designed a lightweight Convolutional Side Adapter (CSA), which integrates the powerful features from SAM into side network training for comprehensive feature fusion. On the other hand, in line with the characteristics of segmentation tasks, we designed Multi-scale Refinement Module (MRM) and Feature Fusion Decoder (FFD) to keep both the detailed and semantic features. Extensive experiments on ten public datasets from three tasks demonstrate that TS-SAM not only significantly outperforms the recently proposed SAM-Adapter and SSOM, but achieves competitive performance with the SOTA domain-specific models. Our code is available at: https://github.com/maoyangou147/TS-SAM.
- Abstract(参考訳): アダプタに基づく微調整は、下流タスクにおけるSAMの性能を改善するために研究されている。
しかし、微調整されたSAMとドメイン固有のモデルの間には、依然として大きなパフォーマンスギャップがある。
ギャップを低減するために,2ストリームSAM(TS-SAM)を提案する。
一方,PEFT(パラメータ・エフェクト・ファインタニング)のサイドネットワークに触発されて,SAMの強力な機能をサイドネットワークトレーニングに統合し,包括的特徴融合を実現する軽量な畳み込みサイドアダプタ(CSA)を設計した。
一方,セグメンテーションタスクの特徴に則って,詳細機能と意味機能の両方を維持するために,MRM(Multi-scale Refinement Module)とFFD(Feature Fusion Decoder)を設計した。
3つのタスクから得られた10の公開データセットに対する大規模な実験により、TS-SAMは、最近提案されたSAM-AdapterとSSOMよりも大幅に優れているだけでなく、SOTAドメイン固有のモデルとの競合性能も達成している。
私たちのコードは、https://github.com/maoyangou147/TS-SAMで利用可能です。
関連論文リスト
- SAMPa: Sharpness-aware Minimization Parallelized [51.668052890249726]
シャープネス認識(SAM)はニューラルネットワークの一般化を改善することが示されている。
SAMの更新には2つの勾配を瞬時に計算する必要がある。
我々は,SAMPaと呼ばれるSAMの簡単な修正を提案し,この2つの勾配計算を完全に並列化することができる。
論文 参考訳(メタデータ) (2024-10-14T16:21:23Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Lite-SAM Is Actually What You Need for Segment Everything [4.696541976769272]
Lite-SAMはSegEveryタスクの効率的なエンドツーエンドソリューションである。
Lite-SAMは4つの主要コンポーネントで構成されている: 合理化されたCNN-Transformerハイブリッドエンコーダ(LiteViT)、自動プロンプトプロポーザルネットワーク(AutoPPN)。
論文 参考訳(メタデータ) (2024-07-12T03:28:46Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
病理画像の正確なオブジェクト分割機能を備えたWSI-SAM, Segment Anything Model (SAM) を提案する。
トレーニングオーバーヘッドを最小限にしながら、トレーニング済みの知識を完全に活用するために、SAMは凍結し、最小限のパラメータしか導入しません。
本モデルでは, 膵管癌 in situ (DCIS) セグメンテーションタスクと乳癌転移セグメンテーションタスクにおいて, SAMを4.1, 2.5パーセント上回った。
論文 参考訳(メタデータ) (2024-03-14T10:30:43Z) - ClassWise-SAM-Adapter: Parameter Efficient Fine-tuning Adapts Segment
Anything to SAR Domain for Semantic Segmentation [6.229326337093342]
Segment Anything Model (SAM) は意味情報と一般化能力に依存する様々なセグメンテーションシナリオを抽出する。
The ClassWiseSAM-Adapter (CWSAM) is designed to adapt the high-performing SAM for landcover classification on Spaceborne Synthetic Aperture Radar (SAR) images。
CWSAMは、少ないコンピューティングリソースでパフォーマンスを向上する。
論文 参考訳(メタデータ) (2024-01-04T15:54:45Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
本研究は,まず,軽量学生モデルを蒸留するためのハードプロンプトサンプリングとハードマスク重み付け戦略を用いた,フルステージの知識蒸留法を提案する。
また、学習後の量子化を高速化可能なセグメンテーションタスクに適用し、計算コストをさらに削減する。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding [40.40630116715132]
一般公開されたビジョンファウンデーションモデル(VFM)の展望は急速に拡大している。
我々は,VFMを効率よく統合したモデルにマージする簡単なレシピを導入し,その専門知識を吸収する。
本手法をSAMおよびCLIPに適用することにより,SAMとCLIPの機能を組み合わせた一元モデルであるSAM-CLIPを単一視覚変換器に適用する。
論文 参考訳(メタデータ) (2023-10-23T19:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。